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PREFACE

In his classic text: “Principles of Optics,” written with Nobel laureate Max Born,
Emil Wolf laid the foundations of contemporary physical optics. By frequency of
citation, that book is one of the three most popular physics books. In the first
edition, published in 1958, Emil Wolf described the almost unknown concept of
spatial coherence before lasers were introduced. He was also the first to document in
a book a new concept: Gabor’s holography. The basic idea of publishing a modern
book on physical optics came from Max Born, but the fact that the closely related
concepts of spatial coherence and holography appeared so early in textbook form
had a formidable impact on science and physical optics engineering. At present
we can identify at least 250 companies and corporate divisions in the English-
language zone alone (U.S.A., Great Britain, Australia, and Canada), the origins
of which are easily traced to modern physical optics in general, and to the book
Principles of Optics in particular. Moreover, several multibillion dollar industries can
also be traced to this legacy, including liquid crystal and LED displays and screens,
screens for direct-projection and rear-projection TV, and many other advanced
illumination systems, sensors, and nonimaging optical devices.

This SPIE Press book pays tribute to Emil Wolf (see Fig. 1) for his pio-
neering contributions to the science and engineering of physical optics. As his
close friend, collaborator, and well-known authority on diffractive optics, Professor
Brian Thompson, refers to Alexander Pope’s epitaph for Newton when character-
izing Emil Wolf ’s contributions to physical optics through his books and numer-
ous scientific papers:

Nature and Nature’s laws lay hid in Night:
God said, Let NEWTON be! And all was Light.

Even though his position that spatial coherence is critical to physical optics was
to some degree opposed by Max Born, it has, over the years, become a very pow-
erful concept in many areas of physical optics, some of which are presented herein.

xvii



xviii Preface

Figure 1 Emil Wolf and his wife Marlies at the SPIE Conference AM100, August
2003, San Diego, California.

These include diffraction optics, statistical optics, polarization of light, electromag-
netic theory of optical coherence, microscopic theory of spatial coherence, physical
radiometry (radiance), physical optics modeling of millimeter wave antennas, co-
herent optical microscopy, color vision, and Wolf ’s wavelength shift. Professor Jan
Perina reviews optics in the Czech Republic (then Czechloslovakia, where Prof.
Wolf was born). Others address coherence-based light scattering, new aspects of
the Sommerfeld half-plane problem as well as Young’s experiment, comparison be-
tween Doppler and Wolf ’s shifts, phase and information, wave-optical engineer-
ing, and holography and the inverse problems. Also discussed here are controver-
sial topics in contemporary optics, advanced liquid crystals, total-internal-reflection
tomography, coherence-mode analysis, nano-optics, and special problems in coher-
ence.

All the chapters of this book are presented by major experts in the field (see
Fig. 2), many of them closely connected to Emil Wolf ’s University of Rochester
School of Optics. The ideas they express are their own, subject only to peer re-
view. The papers are part science and part memoir, but all are suffused with love
and admiration of Emil Wolf, and for his contributions to science and engineer-
ing.



Preface xix

Figure 2(a) Some attendees at SPIE AM 100 Conference, Tribute to Emil Wolf, En-
gineering Legacy of Physical Optics.

Figure 2(b) Silhouettes of attendees from Fig. 2(a): (1) Frank Wyrowski,
Friedrick-Schiller, Univ. of Jena, Germany; (2) Gajendra Savant, Physical Optics Corp.,
Torrance, CA; (3) Sharon Peet, Physical Optics Corp.; (4) John Foley, Mississippi
State Univ.; (5) Ari Friberg, Royal Inst. of Technology, Sweden; (6) Aristide Doga-
riu, CREOL, Univ. of Florida; (7) Chrysostomos L. Nikias, Univ. of Southern Calif.;
(8) Nitin Savant, Physical Optics Corp.; (9) Tomasz Jannson, Physical Optics Corp.;
(10) Joseph Kunc, Univ. of Southern Calif.; (11) Kristina M. Johnson, Duke Univ.;
(12) Kurt Oughstun, Univ. of Vermont; (13) Marlies Wolf, Emil’s wife; (14) James
Bilbro, SPIE 2004 President, and NASA Marshall Space Center; (15) David Fischer,
NASA Glenn Research Ctr.; (16) Emil Wolf, Univ. of Rochester; (17) Riccardo Borghi,
Univ. di Roma Tre, Italy; (18) Christian Brosseau, Univ. de Bretagne Occidentale,
France; (19) Taco Visser, Free Univ. Netherlands; (20) Petr Smid, Palacky Univ.,
The Czech Republic; (21) Anya van der Meulen-Visser, Taco’s wife; (22) Pavel Hor-
wath, Palacky Univ., The Czech Republic; (23) Mikael Ciftan, Army Res. Center;
(24) G.S. Agarwal, Physical Research Lab., India; (25) Mark Bennahmias, Physical Op-
tics Corp.; (26) Zu-Han Gu, Surface Optics, San Diego, CA.



xx Preface

This book is based on the authors’ presentations at SPIE Conference AM100:
Tribute to Emil Wolf: Engineering Legacy of Physical Optics, T.P. Jannson, Chair,
at the SPIE Annual Meeting in August 2003 in San Diego, California. Most
chapters in this book are extended versions of those conference presentations.

Tomasz P. Jannson
James C. Wyant
James W. Bilbro
September, 2004
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August 2004

Dear Emil,

It was an honor and a pleasure to be part of the Society of Photo-Instrumentation
Engineers Annual Meeting Tribute to Emil Wolf: Engineering Legacy of Physical
Optics, recognizing your seminal contributions to this field. Your energy, enthusi-
asm, and passion for optics and life have inspired generations of students, including
myself and fellow graduate students at Stanford, University of Colorado, and now
Duke University.

I recall the first time we met. It was in Cuernavaca, Mexico where many of the
luminaries in the field gathered in February of 1981 to enjoy lively discussions on
all aspects of physical optics, as well as the good weather. There were only a handful
of students at the meeting, and we were a bit intimidated by the stellar participants.
Always a teacher, coach and mentor, you and Marlies took us under your wings
and spent most of the week with us. That serendipitous meeting started a lifelong
friendship that means the world to me.

Our tradition of swimming at 7:00 a.m. before optics meetings started in the
freezing waters in Mexico. We continued to swim in Tucson at the 1982 OSA
meeting, where you and Marlies met my mother, establishing another friendship

Marlies Wolf, Kristina Johnson, and Emil Wolf at SPIE’s Annual Meeting 2003.
(Courtesy of Valerian Tatarskii, copyright 2003.)
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xxiv    Duke University

Kristina Johnson and Emil Wolf, 2003.

that lasted until her death in 1999. We swam in New Orleans (1983), Rochester
(with Bailey’s Irish Cream, 1985), and in San Diego (2003).

You showed me how to build community within the academy. When I became
an assistant professor of electrical engineering at the University of Colorado, you
invited me to give a talk at Rochester on May 2, 1990. You and Marlies hosted
a dinner party for me and other participants of the Cuernavaca meeting, includ-
ing Profs. Nicholas George and Brian Thompson. We had a fabulous evening of
interesting conversation, good food, and great friends. And, of course, we swam.

Emil, you taught me about mutual coherence theory, the “Wolf Shift,” and how
to be a leader in the field. And, like my advisor, Joseph Goodman at Stanford, you
taught me that great men of optics are simply great men.

I look forward to your visit to Duke University this fall and to your lecture in
our Fitzpatrick Center distinguished speaker series. We will again enjoy eating and
thinking. Bring your swimsuit.

With my love, respect, and admiration,

Kristina M. Johnson
Professor and Dean







CHAPTER 1

GUIDE, PHILOSOPHER, AND

FRIEND

Brian J. Thompson

Emil Wolf, “Thou wert [and art] my guide, philosopher, and friend.”*

1.1 Introduction

Having good mentors during the graduate student years and in the early-career
professional experience provides a major stimulus to a productive life as a scholar
and teacher. Our international university doctoral and postdoctoral programs are
at their best when they fully integrate research, educational, and teaching opportu-
nities so that intellectual development and scholarship go hand-in-hand with clear
insight, exposition, and formal teaching.

In my own case I was blessed with three major mentors. The first was Prof.
Henry Lipson, Chairman of the Physics Department in the Faculty of Technology
of the University of Manchester [UMIST—University of Manchester Institute
of Science and Technology, as it is now called]. I had been an undergraduate in
Lipson’s department, graduating in 1955. Before I entered this program I had
served for two years in the British Army in the Royal Electrical and Mechanical
Engineers, where I had the opportunity to learn as a technician about radar systems
and predictors (i.e., early single-function electronic computers).

Immediately upon graduation with my bachelor’s degree, I entered the doc-
toral program at UMIST and continued to have Henry Lipson as a mentor and
acquired my second mentor—Dr. Charles Taylor, who was my thesis advisor. My
third mentor was Dr. Emil Wolf, who came into my life in late 1955.

* Alexander Pope, “An Essay on Man,” Epistle iv 1.389

1



2 Guide, Philosopher, and Friend

1.2 Manchester 1955–1959

Both Lipson and Taylor were x-ray crystallographers with a deep interest in devel-
oping optical analog to x-ray diffraction and the analog computing opportunity that
this optical approach provided. This matched my own interest in optical science
and its applications. Thus, I had access to the optical diffractometer, the relatively
new device that had been developed starting in 1949 [5,6,17,19].

The optical system of the diffractometer is shown in Fig. 1. The source was
a high-pressure mercury arc operated with one of the hot-spots in the arc im-
aged onto a pinhole at S1. The light emitted by this effective secondary incoherent

Figure 1 Schematic diagram of the optical diffractometer.



Brian J. Thompson 3

source was collimated by lens L1, a 5-foot focal length telescope lens. The dif-
fracting object was placed between lens L1 and L2 (a matching 5-foot focal length
telescope objective lens) and the diffraction pattern was formed in the focal plane
of L2, where it was observed, recorded, and measured. Figure 2 shows an old
photograph of the lower half of the diffractometer that was mounted on a vertical
I-beam—I-beams and H-beams became quite popular later on for long optical
benches.

My initial tasks were to fully characterize this instrument and its performance
and solve a number of specific problems of optical and mechanical alignment, fo-
cusing, resolution, and coherence control. Clearly it was very important to think
about this basically simple system in terms of its expected performance as a gen-
erator of diffraction patterns of planar two-dimensional binary objects (i.e., a dif-
fracting mask containing circular holes laid out in various specific geometries).
For example, Fig. 3 shows in (a) a representation of a projection of a molecule of
hexamethylbenzene in which each atom in the molecule is represented by a circu-
lar hole; (b) shows the diffraction pattern of (a). It is relatively easy to recognize
the symmetry relationships and see the reciprocal diffraction structure of the origi-
nal benzene ring. Quantitative positional information is readily available. Figure 4
shows a much more complicated arrangement of holes representing part of the
projected structure of deoxyribose nucleic acid and its corresponding diffraction
pattern.

Making a quantitative analysis of the performance of the optical diffractome-
ter and interpreting the relatively complicated and detailed diffraction patterns
required a significant knowledge of the coherence properties of the illumina-
tion of the diffracting mask. Thus, I studied the papers of Zernike, van Cittert,
H.H. Hopkins, and most particularly the writings of Emil Wolf, I also reread the
work of Michelson on the stellar interferometer. I could not believe my good for-
tune in finding that Dr. Wolf was a resident in Manchester as a Research Fellow
in the Theoretical Physics Department at Owens College of the University of
Manchester, having arrived there the previous year (1954). Thus, my third major
mentor, Emil Wolf, became a significant influence in my life and my work starting
in 1955. Our relationship and friendship have continued over the intervening years
and I am pleased to say exists today (I should also note that my professional and
social relationship with Henry Lipson and Charles Taylor continued throughout
their lives).

Emil Wolf was born in Prague, Czechoslovakia, almost exactly 10 years before
I was born in Glossop, England. I believe he came to England as a teenager and
then entered Bristol University in 1941, receiving his B.Sc. degree in 1945 and his
Ph.D. in 1948; these degrees were in mathematics and physics. He then went to
Cambridge University as a postdoctoral fellow (1948–1951), next moved to Ed-
inburgh University and spent a period of several years as a University lecturer and
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(a) (b)

Figure 3 (a) A representation of a projection of a molecule of hexamethylbenzene;
(b) the diffraction pattern of (a) (from [24]).

(a)

(b)

Figure 4 (a) A representation of part of the projected structure of deoxyribose nucleic
acid; and (b) its corresponding diffraction pattern (from [24]).
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assistant to Prof. Max Born, and hence to Manchester as a Research Fellow from
1954 to 1958. I should also note that he received a D.Sc. degree from Edinburgh
in 1955. (Coincidentally, my wife began her undergraduate studies at St. Matthias
College of Bristol University the very year that Emil left Bristol.)

1.2.1 Two-beam interference

When I met Emil, he was already a very distinguished scholar with a portfolio
of some 25 major publications and he was working hard on the book Principles
of Optics. Our major collaboration was our work on two-beam interference with
partially coherent light. I still have in my own archives some of the original experi-
mental results. One of these sets of results obtained with the optical diffractometer
is shown in Fig. 5. In this particular set of results the diameter of the incoherent

Figure 5 Two-beam interference figures with partially coherent light. Parameters are
listed in the text (from [24]).
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source was 49 µm and the wavelength was 5941 Å (mercury green). Two points
in the optical field were selected by two small circular apertures 0.14 cm in di-
ameter, with varying separations from 1.0 cm to 5 cm covering two zeros of the
degree of spatial coherence. A related set of results were the ones published in our
joint paper entitled “Two-beam interference with partially coherent light” that was
submitted in December of 1956 and published in October of 1957 (see [29]). In
this paper we correlated the results with the theoretical predictions. Figure 6 shows
two of these historical results that were reproduced as part of six illustrations in
Principles of Optics published in 1959. We are pleased to note that they have been
used in many texts, review papers, and articles. These examples in Fig. 6 have the
important parameters listed; note the phase change in the spatial coherence in the
right-hand result, which provides a central minimum in the fringe field, as opposed
to a central maximum. In a follow-up study [23], I left the fringe spacing constant

Figure 5 (Continued).
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Figure 6 Two specific examples from the published set of six illustrations; example 2h is
the separation of the two pinholes, g12 is the modulus of the degree of spatial coherence,
and β is the phase of the degree of coherence [24,29].

and changed the spatial coherence by changing the size of the incoherent source,
thus producing a very nice quantitative illustration of the phase change (Fig. 7).

There is an interesting anecdote associated with our joint paper. It appeared
that there was a discrepancy between the theoretical results and the experimental
results. Of course, my assumption was that there was a mistake in the calculation,
but Emil’s take was that there was an error in the experiment! I went back and
checked all the parameters and indeed found a small error in the measurement
of the diameter of one of the pinholes (an important lesson to make sure of all
measurements at all times).

1.2.2 Coherence control

During this same time period a great deal of progress was made on dealing with
other issues associated with the diffractometer, including alignment, practical rules
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for controlling the illumination and its spatial coherence tailored to the particular
problem being studied, and improvements in the recording techniques [20].

A significant number of other related techniques were developed using control
of the spatial coherence. One of these was to change the secondary source to be
spatially itself coherent by stopping down the aperture of the lens that imaged the
arc onto the pinhole so that the pinhole was smaller than the Airy disc produced
in that plane by the aperture of the imaging lens. The resultant illumination of
the diffraction plane was spatially coherent but with an amplitude taper. Another
control technique is illustrated in Fig. 8. We wished to achieve a bright display of
a diffraction pattern for live display (here we use the example of the projection of
the molecule of hexamethylbenzene). A mask was made of an array of these repre-
sentations, shown in (a). If the illumination is caused to be spatially coherent over
an individual molecule, but is effectively incoherent from molecule to molecule,
then no interference terms are produced and a bright diffraction pattern of the sin-
gle molecule (b) appears some 56 times brighter than that produced by a single
molecule alone, as illustrated in (c).

1.2.3 The Brussels Universal and International Exhibition, 1958

Prof. H. Lipson, Dr. C.A. Taylor, and I were invited by Sir W. Lawrence Bragg,
F.R.S., Director, Davy Faraday Research Laboratory, to contribute an explanatory
exhibit for the International Science Hall at the Brussels Exhibition. The overall
theme was the sequence: atom, crystal, molecule, and cell. Our component was
an Introduction to Diffraction [Catalogue and Handbook for International Science
Hall (1958), Section 0-15], the task was to devise and implement a display suit-
able for public viewing to illustrate diffraction of x rays by crystals. It was clear that
an optical analog display was the way to go. Figure 9 shows a mock-up of part of
our display consisting of two elements; first (on the right-hand side), large-scale
enlargements of optical diffraction patterns of various structures representing pro-
jections of real molecular crystal structures; and second (on the left-hand side),
a direct viewing of a quite bright aerial image of some of these patterns when look-
ing through a “window.” The “window” was in fact a large two-dimensional array
of the structure whose diffraction pattern was to be viewed. The basic scheme was
similar to the earlier discussion of Fig. 8, i.e., coherence control with the addition
of some irregularity of position of each “molecule.” We devised a step-and-repeat
camera to produce these windows on film with clear transparent circular “holes” on
a dark background. First a small irregular array of the molecule was produced with
each molecule in the same orientation; this unit was then repeated in a more-or-less
regular two-dimensional array over a sheet of film that became the window. Behind
the window a bright, but small source of light was reflected by a polished stainless
steel ball to produce a demagnified image of the original source. The observer
looked through the window, and in the plane of the source an image of a relatively
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Figure 8 Control of the spatial coherence: (a) a diffracting mask with a two-dimensional
array of a representation of the projection of a molecule of hexamethylbenzene; (b) the
composite diffraction pattern of this array with the coherence controlled to be coherent
over each molecule but approximately incoherent between molecules; (c) for compari-
son, the pattern of a single molecule alone. Note: (b) would be visually 56 times brighter
than (c) [24].
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Figure 9 “Mock-up” of the display for the International Science Hall at the Brussels
Exhibition (see text for detail).

bright diffraction pattern was seen. The final product looked very professional, and
Charles Taylor and I delivered it to Sir Lawrence Bragg at The Royal Institution
in London for integration and shipment to Brussels. I next saw it on site in the
International Science Hall. Yes, that is a young Brian Thompson looking through
one of the “windows” at our collective handywork in Fig. 9!

At it turned out, Emil Wolf and his doctoral student George Parrent (of Beran
and Parrent fame, 1964) were going to Liège, Belgium, to the International Sym-
posium on Radio Wave Propagation and then on to Brussels. Emil’s paper was en-
titled “Some aspects of rigorous scalar treatment of electromagnetic waves” [31].
So we all went together. Figure 10 shows early morning photographs of the Wolfs
and the Parrents and the author on board the cross-channel ferry. Note Emil
Wolf ’s ever constant pipe!

1.2.4 Books

Fourier Transforms and X-ray Diffraction, by H. Lipson and C.A. Taylor.
During the same period of time, Lipson and Taylor published the small but ele-
gant book on Fourier transforms and x-ray diffraction. I was very pleased to con-
tribute an appendix showing the optical transforms of a hypothetical molecule, two
centrosymmetrically related units (equivalent to the real part of the transform of
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(a)

(b)

Figure 10 “On the way to Brussels.” (a) Left to right: The Parrents and the Wolfs
on board the early morning cross-channel ferry; (b) Brian Thompson photographed by
George Parrent.
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the single molecule transform, two adjacent unit cells, four adjacent unit cells, and
finally the optical transform of many unit cells. Real and imaginary parts as well
as phase and modulus of the transforms were calculated by Keith A. Morley for
comparison with the optical transforms. I am pleased to have a dedicated copy of
this book in my library.

Principles of Optics, a.k.a. “Born and Wolf.” It is a great tribute to the au-
thors of this monumental book that it is usually referred to as “Born and Wolf ”
rather than by its title! Over 40 years since its first publication in 1959, it is still go-
ing strong and in its seventh edition. I was very pleased to have an association with
this volume: the Thompson and Wolf results discussed above became a two-page
spread, and we also contributed a number of other illustrations on diffraction. In
addition, I had the opportunity to proofread a number of the chapters. Emil’s ded-
icated efforts and his scholarship are much to be admired—I believe he checked
every reference in the original. I am very pleased to have a dedicated copy of the

(a) (b)

(c)

Figure 11 (a) Dedication in the first edition of Principles of Optics, 1959, (b) Dedication
in the sixth edition, 1991, (c) Dedication in Optical Coherence and Quantum Optics, 1995.
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first edition of this book along with subsequent editions, as well as other volumes
produced by Emil (see Fig. 11).

1.2.5 The three-dimensional structure of two-dimensional

diffraction

In my work I needed to find a technique for “focusing” the diffractometer, or what
some people call the diffraction-image. More precisely, we needed to be able to
locate the Fourier transform plane as accurately as possible. This plane is, of course,
the image plane of the illuminating source, but getting the best focus for that image
was not generally good enough because of the effective depth-of-focus. Wolf ’s
work on “the light distribution near focus is an error-free diffraction image” [7,30]
gave me an idea since the minimums along the axis were more sharply defined
than the central maximum. Thus, if we locate the first minimum on either side of
the required focal plane, then the plane we need is then halfway between [20]. It
works!

I confess I could not resist engaging in a full experimental investigation of the
diffraction region for a variety of aperture functions, circular, annular, and rec-
tangular. Calculating the equivalent two-dimensional intensity distribution was a
real chore, involving me in many weeks of involvement with tables of Lommel
functions; however, the results were very worthwhile [21]. It was Emil Wolf who
helped me get acquainted with Lommel functions. (For circular and annular aper-
tures see [22].)

Figure 12 shows one of these results for a square aperture; (a) shows the pho-
tographic record of the two-dimensional intensity distribution in the plane of the
second axial zero; (b) is an equal-intensity (isophote) plot for the same exam-
ple [24,25].

1.2.6 Fourier synthesis—spatial filtering

A final activity during this period was some very early work on optical Fourier syn-
thesis (or what was called spatial filtering and the more general optical image and/or
data processing). The optical diffractometer was modified by adding a second lens
system to form an image of the original mask by retransforming the diffraction
pattern, then limiting the contents of the diffraction pattern that contributed to the
image (i.e., spatial frequency filtering). One issue that was evaluated was the effects
of so-called series termination errors in x-ray diffraction, i.e., how is the final cal-
culated crystal structure affected by the limitation of the collection of the diffracted
x rays over a wide angle. Figure 13 shows an example of these results [9,24].

To conclude this section (and to jump forward in time for a moment rela-
tive to the optical analogs to x-ray diffraction), it is worth noting that Lipson and
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Figure 12 Diffraction pattern near focus for a square aperture at the location of the
first axial minimum. (a) Photograph of the two-dimensional intensity distribution in a
plane perpendicular to the optical axis; (b) calculated isophote diagram corresponding
to (a) [24,25].
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Taylor contributed a long article entitled “X-ray cyrstal-structure determination as
a branch of physical optics” to Volume V of Progress in Optics, that excellent series
started by Emil Wolf in 1961 (and still going strong with Volume 46 appearing
this year and many to follow). In return I was asked to contribute two chapters to
a book entitled Optical Transforms, edited by H. Lipson in 1972. These chapters
were titled “Coherence requirements” and “Optical data processing” [27]. Finally,
all these reciprocal insights came together in a review article “Optical transforms
and coherent processing systems—with insights from crystallography” [28].

Figure 13 An example of an early spatial filtering experiment to illustrate series termi-
nation errors in x-ray diffraction by an optical analogue.
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Figure 13 (Continued).

1.3 1958–1968 Various Locations

Emil Wolf left Manchester after spending some time in New York City at the
Courant Institute. He arrived in Rochester, New York, in 1959 to join The Insti-
tute of Optics at the University of Rochester; and what a distinguished career he
has had in Rochester. My own travels took me to Leeds University as Lecturer
in Physics in 1959, where I was involved with soft x-ray spectroscopy of met-
als and alloys. One of my main colleagues was Dr. Colin Curry, who had written
some very fine texts including one that I admired on “Wave optics interference
and diffraction” [3]. Then in 1963 I moved from England to the U.S. and into
Emil Wolf ’s sphere of influence. With a little persuasion from Emil and George
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Parrent, I joined Technical Operations, Inc. (Tech/Ops), in Burlington, Massa-
chusetts, where George Parrent had started a fine optics research and development
group. Physical optics was our main pursuit, and we had many years of exiting
and productive activity including: the development of far-field holography and its
application to dynamic particle size measurement (initially fog), coherent image
formation and its applications, multiple beam interference with partially coherent
light, storing color images in black and white film with Fourier readout (Peter
Mueller gets most of the credit for that development) and some detailed study of
diffraction with partially coherent light). The years 1963–1964 saw the start of a
series of articles that George and I prepared for the Journal of SPIE under the
general title Physical Optics Notebook. Then late in 1969 it became a hardbound
book with the 16 articles that had been published between 1963 and 1967. After
several reprintings, a new and very much expanded version was prepared and pub-
lished in 1989 [18]. We had great team at Tech/Ops that was certainly influenced
by the time Parrent and I spent with Wolf. Our contacts with Emil were frequent
and at various meeting locations around the world. In September 1964, both Emil
and I attended the International Commission for Optics meeting in Tokyo and Ky-

Figure 14 Emil Wolf in Sydney 1964.
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Figure 15 “At the Intensity Interferometer” in Australia, Hanbury-Brown in the center
with hands outstretched is seen talking with part of our group. Toraldo-de-Francia is on
the immediate right (photograph taken in 1964).

oto, Japan, after a satellite meeting in Sydney, Australia, in August. As part of the
Sydney meeting we went out to the site of the intensity interferometer. Figure 15
shows a group of people at that site, with Hanbury-Brown talking as we toured.

At the end of my “tour of duty” at Tech/Ops in Massachusetts, I spent a year at
Tech/Ops West and Beckman & Whitley in California worrying about ultra high-
speed photography, optical scanners, and electro-optic modulators. Then, at Emil’s
request, I prepared a review article for Progress in Optics on “Image formation with
partially coherent light” [26]. By the time the article was published I had accepted
the position as Professor of Optics and Director of the Institute of Optics and
assumed those duties in September of 1968. Thus, I was reunited with Emil Wolf
on the same campus—the University of Rochester.

1.4 The University of Rochester 1968 –

I fully intended to limit my remarks in this paper to the earlier years 1955–1968,
but I couldn’t resist a few comments about the 35 years in Rochester since 1968.
Others, of course, will talk more fully about Emil during that extended period of
productive scholarship on such topics as inverse scattering, evanescent waves, ra-
diometric models, focused fields, quantum optics, partial coherence in the space
frequency domain, red-shifts and blue shifts (Wolf shift), and many, many more
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too numerous to mention here. As for me, I was working on holography, optical
processing (including Knox-Thompson algorithm), apodisation of coherent imag-
ing and beam propagation systems, hybrid processing, two-step phase microscopy,
and the Lau effect, amongst several others.

1.4.1 Books and editing

For over the 35-year period Principles of Optics continued to be a major source book
and its seventh edition (much expanded) came out in 1999. In addition the vol-
ume entitled Optical Coherence and Quantum Optics written by Mandel and Wolf
was published in 1995. Finally, a fine volume Selected Works of Emil Wolf with Com-
mentary appeared in 2001. This book will make a great companion to the vol-
ume in which this current paper appears. For my own part, the much revised
version of the original Physical Optics Notebook re-titled The New Physical Optics
Notebook—Tutorial in Fourier Optics, with an expanded list of authors that includes
George Reynolds and John DeVelis was published by SPIE’s Optical Engineering
Press [18].

In the world of editing Emil’s founding of, and continued editing of, Progress
in Optics (46 volumes and counting) has been of immense value to our commu-
nity. Together with Len Mandel, Wolf had put together a volume entitled Selected
Papers on Coherence and Fluctuations of Light [12]. Late in 1984 SPIE founded the
Milestone Series of Selected Papers on topics in optical science and engineering [28].
As the series editor, I was pleased that we were able to reprint Mandel’s and Wolf ’s
volume of selected papers listed above (see Milestone Volume 19).

Emil Wolf together with Robert Hopkins had started the “Rochester Confer-
ences on Coherence” later to be called the “Rochester Conferences on Coherence
and Quantum Optics.” Emil Wolf was to be coeditor of five of the Proceedings of
these conferences (3rd–7th, 1973–1996). (See Mandel and Wolf 1973–1984 [4].)

Attempting in vain to keep up with Emil’s productivity. I was cager to accept
the invitation to be the series editor of Marcel Dekker’s new book series on Optical
Engineering that recently produced its 85th volume. Additionally, The Interna-
tional Society for Optical Engineering’s main referenced journal is called Optical
Engineering and has published many papers that are a part of Emil’s legacy in phys-
ical optics. My involvement in the early days of the journal, and then as its editor
from 1990–1997, was a very rewarding experience.

1.4.2 Miscellaneous highlights

Michelson Interferometry and Film, March 12, 1980

The above title was that of a symposium presented by The Institute of Optics to
commemorate the Eastman Kodak Centennial. The highlight of this program was
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the presentation by Dorothy M. Livingston, Albert Michelson’s youngest daugh-
ter, based on her book The Master of Light: A Biography of Albert A. Michelson [11].
Figure 16 shows three happy people together on this occasion.

Kingslake Seminar, March 1985

Figure 17 shows two images from this important event as we celebrated the con-
tributions of both Rudolph and Hilda Kingslake—both very good friends and
colleagues of the Wolfs and the Thompsons. The two images are of Emil and my-
self each with Lem Hyde, a former director of The Institute, whom I succeeded
in office.

Wolf-Mandel Day, October 24, 1987

We celebrated Wolf ’s and Mandel’s separate and joint contributions at a day-long
event and Symposium on the Coherence, Propagation, and Fluctuations of Light.
Figure 18 shows these two worthy scholars on that occasion and I will let you write
the caption; it clearly needs a balloon to record Emil’s words!

Farewell Party Goer, March 28, 1995

Emil has always been fully engaged in the total life of the optics community. He is
seen here (Fig. 19) with Duncan Moore (also a former director of The Institute

Figure 16 Emil Wolf, Dorothy Livingston, and Brian Thompson on March 12, 1980,
at the Symposium “Michelson Interferometry and Film,” The Institute of Optics, Uni-
versity of Rochester.
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Figure 17 Emil Wolf and the author, each with Lem Hyde on the occasion of
the Kingslake Seminar, March 1988 (courtesy The Kingslake Archives, University of
Rochester).
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Figure 18 Emil Wolf and Len Mandel at the celebration of Wolf-Mandel Day, Octo-
ber 24, 1987 (courtesy The Kingslake Archives, University of Rochester).

Figure 19 Emil and Marlies Wolf with Duncan Moore at a reception at the University
of Rochester (courtesy The Kingslake Archives, University of Rochester).
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Figure 20 Emil Wolf chatting with Boris Stoicheff at a reception for Optical Society of
America directors and guests at the historic Patrick Barry House.

of Optics) and Mrs. Wolf; Marlies was his constant companion at all these events
and they are attending a farewell reception for Dean Bruce Arden on this occasion.

Optical Society of America Annual Meeting, Rochester, N.Y.,
October 20, 1996

We had a very pleasant reception at the Provost residence, the historic Patrick
Barry House for the OSA directors and other guests. Here (Fig. 20) is Emil (the
party goer) talking with old friend, Boris Stoicheff (University of Toronto). Emil
had spent a sabbatical at the University of Toronto in 1974–1975.

1.5 Conclusion

I remember being asked many years ago by one of my Ph.D. students “who is
my grandfather?” I was puzzled at first by this question—if he didn’t know who
his grandfather was, how would I know! He explained that since I was his the-
sis advisor I was his “academic father,” and thus my thesis advisor would be his
“grandfather” [it crossed my mind at the time that maybe he thought that my aca-
demic ancestry had more value for him for name recognition than his current thesis
advisor’s name! But perish the thought!] I was, however, able to give him great sat-
isfaction: Professor Charles Taylor, F.R.S., was my advisor; in turn, Taylor’s advi-



26 Guide, Philosopher, and Friend

sor was Professor Henry Lipson, F.R.S., whose advisor was Sir Lawrence Bragg,
F.R.S., and Nobel Laureate (this last honor shared with his father Sir William
Bragg, F.R.S.—the father was the son’s academic advisor. The frosting on the cake
came when I informed the student that he could count Prof. Emil Wolf as his
academic great uncle.

There is one paper that sums up Emil’s approach to theoretical work and that
is really the title of his Nuovo Cimento paper “Optics in terms of observable quan-
tities” [33].

Emil, we celebrate your contributions to the scholarship and teaching that you
have provided for us all. Thank you.
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CHAPTER 2

RECOLLECTIONS OF MAX BORN

Emil Wolf

At the request of the organizers of the SPIE International Symposium on Op-
tical Science and Technology, which was held in San Diego, CA on 3–8 August
2003, I gave an after-dinner speech at the Symposium Banquet. I spoke about my
collaboration with Max Born, a halfcentury earlier. The talk followed closely an ar-
ticle that was originally published in Optics News 9, 10–16 (1983) and is reprinted
below.

The editor of this volume, Dr. Tomasz Jannson, asked me to add some remarks
about the early days of holography and coherence that might be of special interest
to the reader. The brief remarks that follow were written in response to this request.

Max Born knew well the inventor of holography, Dennis Gabor, and because
of it, we learned about Gabor’s invention long before the great discovery became
generally known and appreciated. In fact, Principles of Optics was, I believe, the
first book in which the principles of holography were explained. Gabor was very
pleased that our book presented an account of his invention, as will become evident
on reading the article that follows.

The subject of coherence was, at the time of my collaboration with Max Born,
in its infancy. I became aware of it when I was working on the chapter concern-
ing interference for our book. The theory of interference, as described in optics
textbooks of that time, dealt mainly with monochromatic waves, not with wave-
fields that randomly fluctuate. These more complicated waves, which, in general,
are partially coherent, can be adequately described only in statistical terms. While
attempting to develop in our book a more satisfactory treatment of interference by
using elementary statistical concepts, I was able to introduce a more realistic treat-
ment of interference. It was a very fortunate coincidence that only a year after our
book was published, the first lasers were developed, which triggered great interest
in questions concerning coherence of light.

More about these two topics is briefly mentioned in the pages that follow.

29
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2.1 Introduction

The invitation to address this meeting has given me the rare opportunity to set
aside my customary activities and try to recall a period of my life several decades
ago when I had the great fortune of being able to collaborate with Max Born. As
the title of my talk suggests, this will be a rather personal account, but I will do
my best to present a true image of a scientist who has contributed in a decisive
way to modern physics in general and to optics in particular; it will also present
glimpses of a man who, under a somewhat brusque exterior, was a very humane
and kind person and who in the words of Bertrand Russell was brilliant, humble,
and completely without fear in public utterances.

The early part of my story is closely interwoven with another great scientist,
Dennis Gabor, through whose friendship I became acquainted with Born.

I completed my graduate studies in 1948 at Bristol University. My Ph.D. the-
sis supervisor was E. H. Linfoot, who at just about that time was appointed As-
sistant Director of the Cambridge University Observatory. He offered me, and I
accepted, a position as his assistant in Cambridge. During the next two years while
I worked in Cambridge I frequently traveled to London to attend the meetings
of the Optical Group of the British Physical Society. They were usually held at
Imperial College and were often attended by Gabor, whose office was in the same

Figure 1 Max Born at his desk, ca 1950. (Credit: AIP Niels Bohr Library.)
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complex of buildings. From time to time I presented short papers at these meet-
ings. At the end of some of the meetings Gabor would invite me to his office for
a chat. He would comment on the talks, make suggestions regarding my work,
and speak about his own researches. Gabor liked young people, and he always of-
fered encouragement to them. He knew Born from Germany, and he had great
admiration for him.

Through Gabor I learned in 1950 that Born was thinking of preparing a new
book on optics, somewhat along the lines of his earlier German book Optik, pub-
lished in 1933, but modernized to include accounts of the more important devel-
opments that had taken place in the nearly 20 years that had gone by since then.
At that time Born was the Tait Professor of Natural Philosophy at the University
of Edinburgh, a post he had held since 1936, and in 1950 he was 67 years old,
close to his retirement. He wanted to find some scientists who specialized in mod-
ern optics and who would be willing to collaborate with him in this project. Born
approached Gabor for advice, and at first it was planned that the book would be
written jointly by him, Gabor, and H. H. Hopkins. The book was to include a few
contributed sections on some specialized topics, and Gabor invited me to write a
section on diffraction theory of aberrations, a topic I was particularly interested in
at that time. Later it turned out that Hopkins felt he could not devote adequate
time to the project, and in October of 1950, Gabor, with Born’s agreement, wrote

Figure 2 Dennis Gabor.
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to Linfoot and me asking if either of us, or both, would be willing to take Hopkins’
place. After some lengthy negotiations it was agreed that Born, Gabor, and I would
co-author the book.

2.2 The Start of Collaboration

I was, of course, delighted with this opportunity, but there was the problem of
my finding the necessary time to work on this project while holding a full-time
appointment with Linfoot at Cambridge. I mentioned this to Gabor, and I told
him that if there were any possibility of obtaining an appointment with Born, which
would allow me to spend most of my time working on the book, I would gladly
leave Cambridge and go to Edinburgh.

Gabor took up the matter with Born, who was interested. Toward the end of
November 1950, Gabor wrote me that Born would be in London a few days later
and that he (Gabor) was arranging for the three of us to meet the following week-
end. It was agreed that I would come to Gabor’s office at Imperial College on the
following Saturday morning, December 2, 1950, and that we would then go to his
home in South Kensington, within walking distance of Imperial College. Born was
to come directly to Gabor’s home from his London hotel, and the three of us and
Mrs. Gabor would have lunch there.

I arrived at Gabor’s office just before lunch, and I have a vivid recollection of
that meeting. There was a long staircase leading to the entrance hall of the build-
ing. As we were walking down the staircase, Gabor suddenly became somewhat
apprehensive. He knew that our luncheon meeting might lead to an appointment
for me with Born, and he said to me, “Wolf, if you let me down, I will never forgive
you. Do you know who Born’s last assistant was? Heisenberg!” This statement was
not accurate. Born had other assistants after Heisenberg, but the remark shows
how nervous Gabor was on that particular occasion. Fortunately, all turned out
well, and Gabor certainly seemed in later years well satisfied with the consequences
of our luncheon with Born.

During that meeting Born asked me a few questions, mainly about my scientific
interests, and before the lunch was over he invited me to become his assistant in
Edinburgh, subject to the approval of Edinburgh University. It seemed to me
remarkable that Born should have made up his mind so quickly, without asking
for even a single letter of reference, especially since I had published only a few
papers by that time and was quite unknown to the scientific community.

Later, when I got to know Born better, I realized that his quick decision was
very much in line with one trait of his personality; he greatly trusted the judgment
of his friends. Since Gabor recommended me, Born considered further inquiries
about me to be superfluous. Unfortunately, as I also learned later, Born’s implicit
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trust in people whom he considered to be his friends was occasionally misplaced
and sometimes created problems for him.

A few days after our meeting I received a telegram from Born inviting me to
a formal interview at Edinburgh University. The interview took place about two
weeks later, and the next day Born wrote me saying that the committee which in-
terviewed me recommended my appointment as his private assistant, beginning
January 23, 1951. I resigned my post in Cambridge and took up the new appoint-
ment. Later I learned that committee approval was not really needed because my
salary was to be paid from an industrial grant that was entirely at Born’s disposal.
However, on this occasion Born was careful, because some time earlier he had had
on his staff Klaus Fuchs, who turned out to be a spy for the Prussians, and Born
got rather bad publicity from that.

Now, the name Fuchs means fox in German, and before inviting me to Ed-
inburgh, Born apparently wrote to Sir Edward Appleton, the Principal of Edin-
burgh University at that time, saying that he felt the decision about this particular
appointment should not be made by him alone; since he would like to appoint a
Wolf after a Fox!

2.3 Arrival at Edinburgh

I arrived in Edinburgh toward the end of January 1951, eager to start on our
project. Born’s Department of Applied Mathematics was located in the basement
of an old building on Drummond Street. I was surprised by the small size of the
department. Physically it consisted of Born’s office; an adjacent large room for

Figure 3 The building on Drummond Street in Edinburgh that housed Max Born’s
Department of Applied Mathematics.
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all of his scientific collaborators, about five at that time; a small office for Mrs.
Chester, his secretary; two rooms for the two permanent members of his academic
staff, Robert Schlapp, a senior lecturer, and Andrew Nisbet, a lecturer; and one
lecture room. The rest of the building was occupied by experimental physicists un-
der the direction of Professor Norman Feather. In earlier days the building housed
a hospital, in which Lord Lister, a famous surgeon known particularly for his work
on antiseptics, also worked.

In spite of his advanced age Born was very active and, as throughout all his
adult life, a prolific writer. He had a definite work routine. After coming to his
office he would dictate to his secretary answers to the letters that arrived in large
numbers almost daily. Afterward he would go to the adjacent room where all his
collaborators were seated around a large U-shaped table. He would start at one end
of it, stop opposite each person in turn, and ask the same question: “What have you
done since yesterday?” After listening to the answer he would discuss the particular
research activity and make suggestions. Not everyone, however, was happy with
this procedure. I remember a physicist in this group who became visibly nervous
each day as Born approached to ask his usual question, and one day he told me
that he found the strain too much and that he would leave as soon as he could find
another position. He indeed did so a few months later. At first I too was not entirely
comfortable with Born’s question, since obviously when one is doing research and
writing there are sometimes periods of low productivity. One day when Born stood
opposite me at the U-shaped table and asked, “Wolf, what have you done since
yesterday?” I said simply, “Nothing!” Born seemed a bit startled, but he did not
complain and just moved on to the next person, asking the same kind of question
again.

Born was always direct in expressing his views and feelings, but he did not
mind if others did the same, as this small incident indicates. There will be more
examples of this later.

2.4 Work at Edinburgh

We started working on the optics book as soon as I came to Edinburgh. It was
understood right from the beginning that Born’s main contribution would consist
of making material available from his German Optik, but he was to take part in the
planning of the new book, make suggestions, and provide general advice. Most of
the actual writing was to be done by Gabor and me and a few contributors. How-
ever, like Hopkins earlier on, Gabor soon found it difficult to devote the necessary
time to the project, and it was mutually agreed that he would not be a co-author
after all, but would just contribute a section on electron optics. So in the end it be-
came my task to do most of the actual writing. Fortunately I was rather young then,
and so I had the energy needed for what turned out to be a very large project. I was
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Figure 4 Max Born as Privatdozent in Göttingen. (Reproduced from Hilbert by Con-
stance Reid, 1970.)

in fact 40 years younger than Born. This large age gap is undoubtedly responsible
for a question I am sometimes asked, whether I am a son of the Emil Wolf who
co-authored Principles of Optics with Max Born!

Although I did most of the writing, Born read the manuscript and made sug-
gestions for improvements. We signed a contract with the publishers about a year
after I came to Edinburgh, and we hoped to complete the manuscript by the time
Born was to retire, one-and-a-half years later. However, we were much too opti-
mistic. The writing of the book took about eight years altogether.

Throughout his life Born was a quick, prolific writer, publishing more than 300
scientific papers, about 31 books (not counting different editions and translations),
apart from numerous articles on nonscientific topics.* In spite of my relative youth
I could not compete with the speed with which Born wrote, even at his advanced
age, and it soon became clear to me that he was not too pleased with my slow
progress.

One day when I started writing an Appendix on Calculus of Variations, Born
said that the best treatment of that subject he knew of was in his notes of lectures
given by the great mathematician David Hilbert in Göttingen in the early years of

* A bibliography of Born’s scientific publications is given in “Max Born,” by N. Kemmer and
R. Schlapp in Biographical Memoirs of the Royal Society, 17, London: the Royal Society, 1971,
pp. 17–52. Born’s autobiography [2] was published posthumously, first in German in 1975 and
is, therefore, not included in that bibliography.



36 Recollections of Max Born

Figure 5 Max Born in the 1920s.

this century. Born suggested that he dictate the Appendix to me, following in the
main Hilbert’s presentation, and that we acknowledge this in the preface to our
book. So we started in this way. After each dictating session I was to rewrite the
notes and give them to Born the next day for his comments. But we did not get
very far this way. After about two dictating sessions Born said he could prepare
the whole Appendix himself much faster without my help, which he then did. It
is essentially in this version, written by Born, that the Appendix on Calculus of
Variations appears in our book.

2.5 Born’s Revered Teacher

David Hilbert, whose presentation Born closely followed, was one of Born’s great
heroes. To physicists Hilbert is mainly known in connection with the concept of the
Hilbert space and as co-author of the classic text Methods of Mathematical Physics,
referred to generally as “Courant-Hilbert.” But Hilbert contributed in a funda-
mental way to many branches of mathematics and was generally considered to have
been the greatest mathematician of his time. Born became acquainted with Hilbert
soon after coming to Göttingen in 1905, later becoming Hilbert’s private assis-
tant. In one of his later writings Born refers to Hilbert as his “revered teacher and
friend,” and in a biography of Hilbert by Constance Reid [4], Born is quoted as
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Figure 6 David Hilbert, 1912.

saying that his job with Hilbert was to him “precious beyond description because
it enabled [him] to see and talk to him every day.”

Born had an encyclopedic knowledge of physics and whatever problem one
brought to him, he was able to offer a useful insight or suggest a pertinent refer-
ence. He also knew personally all the leading physicists of his time and would often
recall interesting stories about them.

Optics in those days—remember we are talking about optics in pre-laser
days—was not a subject that most physicists would consider exciting; in fact, rel-
atively little advanced optics was taught at universities in those days. The fash-
ion then was nuclear physics, particle physics, high energy physics, and solid state
physics. Born was quite different in this respect from most of his colleagues. To him
all physics was important, and rather than distinguish between “fashionable” and
“unfashionable” physics he would only distinguish between good and bad physics
research.

Born was equally broad-minded about the techniques used by physicists in
their research. For example, when we were writing a section on certain mathemati-
cal methods needed to evaluate the performance of optical systems, we found that
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although the results given in a basic paper on this subject were correct, the deriva-
tion contained serious flaws. I was rather indignant about this, but Born just said
something like, “In pioneering work everything is allowed, as long as one gets the
right answer. Real justification can come later.”

One of the earliest occasions when many physics students encounter Born’s
name comes when they start studying quantum theory of scattering. Here they
soon learn about the Born approximation. This term also occurs in many of the
papers on potential scattering that have been published in the more than half a
century that has gone by since Born wrote a basic paper on this subject. Yet Born
was rather irritated when the Born approximation was mentioned. He once said to
me, “I developed in that paper the whole perturbation expansion for the scattered
field, valid to all orders, yet I am only given credit for the first term in that series!”

2.6 Resistance to New Discoveries

It was not always easy for Born’s collaborators to convince him quickly of new
discoveries. Let me illustrate this by an example from my own experience. In the
early 1950s I became very interested in problems of partial coherence. One day I
found a result in this area of optics that seemed to me remarkable. I phoned Born
from my home one morning, told him I had an exciting new result, and asked him
for an appointment to discuss it. We arranged to have lunch together that day.

When I came to his office just before lunch, Born wanted to know straight away
what the excitement was all about. I told him I had found that not only an optical
field, but also its coherence properties, characterized by an appropriate correlation
function (now known as the mutual coherence function), are propagated in the
form of waves. Born looked at me rather skeptically, put his arm on my shoulder
and said, “Wolf, you have always been such a sensible fellow, but now you have
become completely crazy!” Actually after a few days he accepted my result, and I
suspect he then no longer doubted my sanity.

This incident illustrates a fact well known to Born’s collaborators—that Born
had a certain resistance to accept new results obtained by others. Nonetheless, he
continued thinking about them, and if they were correct he would eventually apol-
ogize for doubting them in the first place.

This trait of Born’s personality is very well described by the Polish physicist
Leopold Infeld, who collaborated with Born in Cambridge in the 1930s. I will
quote shortly some very perceptive observations Infeld made about Born in his
biography [3]; but before doing so I would like to mention a small incident relating
to this book.

One day I browsed through a bookstore in Edinburgh and found a used copy
of Infeld’s book. I was astonished to note that the book had Born’s signature on its
first page. I purchased it and asked Born the next day whether he knew the book.
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He said, “Yes, I had a copy of it and there is a funny description of me in it; but
I lent it to someone and it was never returned. I cannot remember whom I lent it
to.” The book I had purchased was obviously Born’s missing copy, so I gave it to
him, much to his delight.

In the book Infeld describes some of his experiences in Cambridge. He started
working with Dirac but found him rather uncommunicative. Later Infeld attended
some of Born’s lectures. During one of them Born gave an account of some results
that he had recently obtained. Infeld could not understand one of Born’s argu-
ments. He borrowed his notes so that he could study the argument more closely
later. Let me now quote from Infeld’s biography ([3], p. 208, et seq.):

On the evening of the day I received the paper the point suddenly became clear to me.
I knew that the mass of the electron was wrongly evaluated in Born’s paper and I knew how to
find the right value. My whole argument seemed simple and convincing to me. I could hardly
wait to tell it to Born, sure that he would see my point immediately. The next day I went to him
after his lecture and said: “I read your paper; the mass of the electron is wrong.” Born’s face
looked even more tense than usual. He said: “This is very interesting. Show me why.” Two of
his audience were still present in the lecture room. I took a piece of chalk and wrote a relativistic
formula for the mass density. Born interrupted me angrily: “This problem has nothing to do
with relativity theory. I don’t like such a formal approach. I find nothing wrong with the way
I introduced the mass.” Then he turned toward the two students who were listening to our
stormy discussion. “What do you think of my derivation?” They nodded their heads in full
approval. I put down the piece of chalk and did not even try to defend my point. Born felt a
little uneasy. Leaving the lecture room, he said, “I shall think it over.”

Infeld then goes on to say:

I was annoyed at Born’s behavior as well as at my own and was, for one afternoon, disgusted
with Cambridge. I thought: “Here I met two great physicists. One of them does not talk.
I could as easily read his papers in Poland as here. The other talks, but he is rude.” The next
day I went again to Born’s lecture. He stood at the door before the lecture room. When I passed
him he said to me. “I am waiting for you. You were quite right. We will talk it over after the
lecture. You must not mind my being rude. Everyone who has worked with me knows it. I have
a resistance against accepting something from outside. I get angry and swear but always accept
it after a time if it is right.”

Our collaboration had begun with a quarrel, but a day later complete peace and under-
standing had been restored.

A little further on in his biography, Infeld speaks about Born again, and this is
what he says:

I marveled at the way in which he managed his heavy correspondence, answering letters
with incredible dispatch, at the same time looking through scientific papers. His tremendous
collection of reprints was well ordered; even the reprints from cranks and lunatics were kept,
under the heading “Idiots.” Born functioned like an entire institution, combining vivid imagi-
nation with splendid organization he worked quickly and in a restless mood. As in the case of
nearly all scientists, not only the result was important but the fact that he had achieved it.
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Infeld later continues:

There was something childish and attractive in Born’s eagerness to go ahead quickly, in his
restlessness and his moods, which changed suddenly from high enthusiasm to deep depression.
Sometimes when I would come with a new idea he would say rudely, “I think it is rubbish,” but
he never minded if I applied the same phrase to some of his ideas. But the great, the celebrated
Born was as happy and as pleased as a young student at words of praise and encouragement. In
his enthusiastic attitude, in the vividness of his mind, the impulsiveness with which he grasped
and rejected ideas, lay his great charm.

I regard these remarks of Infeld as a true and very perceptive description of Born’s
mode of work and of Born’s personality.

2.7 Kind and Compassionate

In spite of Born’s occasional irritation and impatience, he was a person who cared
deeply for the well-being of his fellow scientists and collaborators. His wife, Hed-
wig Born, was likewise a person with deep compassion for others. She too was a
remarkable and gifted person, Mrs. Born published a number of books, especially
poetry, and around 1938 became a Quaker, remaining active in the Quaker move-
ment for the rest of her life.

Figure 7 Mrs. Hedwig Born, 1961.
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I would like to give just one example from my own experience, which illustrates
Born’s concern for others. A few months after I began working with Born, I was
getting married. In those days it was difficult to rent an apartment in Edinburgh.
One day during the time when we were searching for a home I received a letter
from Mrs. Born, who was then with Professor Born on a visit to Germany. She said
that they had heard about our problem and were very concerned that we might have
to postpone getting married if we did not find somewhere to live. She then offered
to help us, suggesting that we share with them their small house in Edinburgh. In
the end we found an apartment elsewhere; but this small episode is an indication
of the warmth of their personalities and of their willingness to make a personal
sacrifice to help, when help was needed.

“In an Age of mediocrity and moral pygmies, the lives of Albert Einstein and Max Born
shine with an intense beauty. Something of this is reflected in their correspondence, and the
world is the richer for its publication.” †

Bertrand Russell

I mentioned earlier, that one of Born’s great heroes was the mathematician
David Hilbert. But there was another, even greater hero in Born’s life: Albert Ein-
stein, with whom he and also Mrs. Born maintained close personal friendships
for almost half a century. Unfortunately, after Einstein left Europe for America in

Figure 8 The house of Max and Hedwig Born in Edinburgh, at 84 Grange Loan.

† From Bertrand Russell’s Foreword to The Born-Einstein Letters, Ref. 4.
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Figure 9 Albert Einstein in the 1920s. (Credit: AIP Niels Bohr Library.)

1932 they did not see each other again, but they carried on extensive correspon-
dence until Einstein’s death in 1955. The letters they exchanged were published in
1971, together with Born’s commentary, and the volume [1] is a precious contri-
bution to the history of physics and of the times in which they lived.

There is an episode I would like to relate briefly in connection with Born’s
friendship with Einstein. In the early 1950s, when Sir Edmund Whittaker was
preparing the second volume of his classic work A History of the Theories of Aether
and Electricity, he sent Born the manuscript of a section dealing with the special
theory of relativity. Whittaker’s treatment placed a heavy emphasis on the work
of Poincaré and Lorentz and dismissed Einstein’s contribution as being of rather
minor significance. Born, who himself wrote a book on the theory of relativity,
was most unhappy with Whittaker’s manuscript and sent him a long report in
which he analyzed in detail the various contributions, indicating why he considered
Einstein’s contribution to be much more fundamental.
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Figure 10 Sir Edmund Whittaker. (Reproduced by the courtesy of the University of
Edinburgh.)

However, Born did not succeed in changing Whittaker’s opinion.‡ In Sep-
tember of 1953, around the time Whittaker’s book was published, Born wrote to
Einstein about this. Let me quote from Born’s letter [1, p. 197]: “Many people
may now think (even if you do not) that I played a rather ugly role in this business.
After all it is common knowledge that you and I do not see eye to eye over the
question of determinism.”

Einstein was not concerned. This is what he said in his reply to Born
[1, p. 199]: “Don’t lose any sleep over your friend’s book . . . . If he manages to
convince others, that is their own affair. I myself have certainly found satisfaction
in my efforts. . . .” and then Einstein added, “After all, I do not need to read the
thing.”

Born retired that year, in 1953. The accompanying photograph shows Born
with the members of his department at the time of his retirement.

‡ Born’s opinion on this question rather than Whittaker’s is generally accepted. See, for exam-
ple, D. Martin’s biographical note about E. T. Whittaker in Dictionary of Scientific Biography,
C. C. Gillespie, editor-in-chief (Charles Scribner’s Sons, New York, 1976), Vol. XIV, p. 317; or
A. Pais: Subtle Is the Lord, The Science and the Life of Albert Einstein (Clarendon Press, Oxford,
and Oxford University Press, New York, 1982), p. 168.
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Figure 11 Members of Max Born’s department at the time of his retirement (1953)
from the Tait Chair of Natural Philosophy at the University of Edinburgh. Standing (from
left to right) E. Wolf, D. J. Hooton, A. Nisbet. Sitting: Mrs Chester (secretary), M. Born,
R. Schlapp.

“Everybody who had contact with him remembers him not only as a brilliant scientist but
also as a man of human warmth and greatness.” §

2.8 Life in Retirement

Soon afterward the Born’s left Edinburgh and settled in Bad Pyrmont, a spa in
West Germany, not far from Göttingen, where they built a small house. When they
left Edinburgh our book was far from finished. We corresponded about it, and I
visited Born in his new home several times. Born was hoping that he and Mrs.
Born would be able to lead a more quiet life in Bad Pyrmont, but he told me on
one of my visits that this proved difficult to achieve. For example, soon after they
settled, in Bad Pyrmont, Born was invited to address a meeting of a West German
physical society. He declined the invitation, saying that he was too old to travel. He
received a reply stating that in view of this the meeting would be moved to Bad
Pyrmont!
§ From an introduction by Victor F. Weisskopf to an article by Max Born entitled “Man and the

Atom,” published by the Society for Social Responsibility of Science (Pamphlet #4) Southhamp-
ton, Pa., and the American Friends Service Committee, Philadelphia, Pa.
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Figure 12 Max Born in Bad Pyrmont feeding pigeons.

In 1954, the year after his retirement, Born was awarded the Nobel Prize. He
was, of course, delighted, but I am quite sure he felt, as many others did, that
this great recognition had come somewhat late. The Nobel Prize was awarded to
him for contributions that he made almost 30 years earlier. However, as his son
Gustav later noted in a postscript to Born’s memoirs [2, p. 296], it came at the
right time to add weight to his main retirement occupation, which was to edu-
cate thinking people in Germany and elsewhere in the social, economic, and po-
litical consequences of science and also of the dangers of nuclear weapons and
re-armament.

In 1957 I was a Visiting Scientist at the Courant Institute of New York Uni-
versity, still working on our book. One day I received a letter from Born asking me
why the book was not yet finished. I replied that practically the whole manuscript
was completed, except for a chapter on partial coherence on which I was still work-
ing. Born wrote back almost at once, saying something like, “Who apart from you
is interested in partial coherence? Leave that chapter out and send the rest of the
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Figure 13 A dedication from Dennis Gabor.

manuscript to the printers.” Actually I completed that chapter shortly afterward
and it was included in the book.

It so happened that within about two years after the publication of our book
(in 1959) the laser was invented and optical physicists and engineers then became
greatly interested in questions of coherence. Our book was the first that dealt in
depth with this subject, and Born was then as pleased as I was that the chapter was
included.

Our book was also one of the first textbooks containing an account of holog-
raphy. Gabor was very happy about it. Later, when holography became popular
and useful, he sent me a reprint of one of his papers with a charming dedication
(Fig. 13).

As I approach the end of my reminiscences about Max Born, I would like to
say that I hope my talk conveyed to you the warmth and the affection with which
he remains in my memory, not only as a great scientist, but also as a kind and
remarkable human being. My feelings about our collaboration are well described
by exactly the same words that Born used when he spoke about his association with
David Hilbert, quoted earlier, namely that my appointment with him was precious
to me beyond description, because it enabled me to see and to talk to him every
day.

2.9 Olivia

Before ending I would like to show you a few pictures taken in Bad Pyrmont dur-
ing Born’s retirement and also to mention one more episode. One shows Professor
and Mrs. Born with one of their daughters, Irene. Some years ago I learned that
Irene is the mother of a lady who has achieved fame comparable to that of Max
Born himself, but in an entirely different field. I am speaking of the pop singer
Olivia Newton-John. Shortly after I learned that Olivia Newton-John was Max
Born’s granddaughter I was on a sabbatical leave at the University of Toronto.
Olivia was scheduled to give a concert in Toronto while I was there. I wrote to her,
told her I had collaborated with her grandfather in the writing of a book, and asked
her whether we could meet. I received a charming reply in which she invited me to
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Figure 14 Hedwig Born and Max Born, with their daughter Irene Newton-John in
Bad Pyrmont, 1957. (Credit: AIP Niels Bohr Library.)

Figure 15 Max Born in front of his library at his home in Bad Pyrmont.
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Figure 16 Max Born with two of his grandsons, Max and Sebastian (children of Gus-
tav) in Bad Pyrmont. (Credit: AIP Niels Bohr Library.)

Figure 17 Left: Olivia Newton-John, granddaughter of Max Born. Right: Max Born.
(Credit: Lotte Meitner-Graf.)
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meet her after the concert. We met then and talked mainly about her grandparents.
Before I left Olivia gave me two autographed photos of herself. Let me add that
to some of my students I am known not so much as the co-author of Principles
of Optics but rather as the person who knows Olivia Newton-John and who has a
picture of her hanging in his office signed “To Emil, Love, Olivia.”

I cannot bring you the voice of Max Born, but I will end my presentation with
one of the songs that made Olivia famous. (The lectures on which this article is
based concluded with an excerpt from the song “If You Love Me Let Me Know.”)
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CHAPTER 3

WHAT POLARIZATION OF

LIGHT IS: THE CONTRIBUTION OF

EMIL WOLF

Christian Brosseau

3.1 Introduction and Scope

Whenever I teach my polarization optics course, one of the central messages I try
to get across early is that polarization of light abounds with dichotomies. This has
been known for more than three centuries, and there is no question that it has gen-
erated a considerable amount of excitement among researchers in the last decades.
It is an aspect of the visual world detected by insects and many vertebrates other
than mammals but is hidden from us, its origins rooted deep in statistical physics
and electromagnetism. Its applications involve areas as diverse as photonics, in-
formation technology, and biology, yet its understanding is still incomplete. Before
starting to consider the details of the theory of polarized light, I would like to draw
the reader’s attention to a brief consideration of the historical background to illus-
trate that Emil Wolf is a most influential and contemporary theoretical physicist in
the development of polarization optics.

3.1.1 Pulling the strands of Emil Wolf’s contributions to

polarization optics

Emil Wolf is a living legend in the field of physical optics. Born in Prague, Czecho-
slovakia, Emil Wolf began research on the behavior and physics of light under the
auspices of Prof. Linfoot at the University of Bristol, U.K. After holding sev-
eral research positions (at Cambridge and Edinburgh), Prof. Wolf moved to the
United States (University of Rochester) in 1959, where he was soon making classic
contributions to the theories of coherence and polarization of light. Not only has
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Wolf ’s productivity continued unabated, his work has been a turning point in the
history of modern optics.

Wolf ’s ideas on partial coherence and partial polarization were first published
in his 1954 paper “Optics in terms of observable quantities,” [1] and later dis-
cussed in his 1959 magnum opus Principles of Optics [2] coauthored with Nobel
laureate Max Born, which is among, perhaps, five of the most famous books ever
written on optics. A generation of students (including my own when I was an un-
dergraduate) has learned the basics of optics thanks in no small part to courses
based on Principles of Optics. Through seven editions it has established an enviable
record for high-quality presentation, with the author showing a remarkable ability
to make both basic concepts and cutting-edge research topics accessible to read-
ers [3]. I can remember that this book was my first exposure to the amazing facts of
optics, and it also taught me some remarkable mathematics that I could actually see
for myself made sense. Wolf has also written standard works on a large variety of
topics ranging from medical imaging to astronomy, and a pioneering textbook [4]
on the coherence of light coauthored with the late Leonard Mandel, which is to-
day the undisputed bible of the subject. His prolific publications have influenced
all aspects of the discipline and are actively discussed in academic literature (e.g.,
correlation-induced shift is now identified with the adjective “Wolf ”), as well as in
engineering fields (e.g., diffraction tomography).

It is a daunting task to integrate the many facets of the extraordinary career of
Emil Wolf into a unified whole. Rather than trying to do that, I focus here on his
work on coherence and polarization, which were early influences on my interests
in optics. Wolf ’s growing influence on the statistical description of polarized light
was recognized as long ago as 1954 [2], when he introduced a precise measure
of the correlations between the fluctuating field variables at two space-time points.
The idea of correlations represents a landmark in the history of polarization optics
and has been highly successful. Still, it was Wolf who gave us the alphabet from
which the field of coherence and polarization optics was written. We celebrate his
work and hope to live up to it in some small way.

3.1.2 Structure of the review

The remainder of this introduction presents an overview of the salient historical
and experimental facts and qualitatively describes the ideas and issues that have
been shown to be important for understanding the phenomenon of polarization. In
Sect. 3.2.1, it will be shown how the polarization and coherence concepts call for a
statistical method that can handle the second-order description of the fluctuations
of the electric field vector of light. A number of questions related to scalar invari-
ants are considered. Section 3.2.1 describes the statistical method in just the right
amount of detail for the reader to appreciate its use in polarization theory. The ap-
plication of the general concepts to the problem of light scattering is then given in
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Sect. 3.2.3. Motivated by the problem of multiple scattering of polarized light by a
spatially random medium composed of uncorrelated and noninteracting spherical
dielectric particles, the task of numerically establishing the size and polarization
dependence of the characterisc depolarization length is undertaken. To cope with
numerical difficulties encountered, a Monte Carlo technique is developed, which
allows us to study the statistical behavior of the wave propagation. With its help,
strong numerical evidence is found, suggesting that the the size of the spherical
particles and the optical depth play an important role on entropy production. It is
also shown that one of the most remarkable aspects of this problem where no en-
ergy exchange between radiation and scatterer takes place is that the stationary state
corresponds to both the state of minimum production of radiation entropy and to
the state of maximum entropy. Section 3.2.3 presents opinions on the current state
of the field as well as the areas of activity with the brightest outlook for future work.
The final section contains concluding remarks.

3.1.3 Historical overview

Polarization effects have historically captured the interest of physicists and it is
natural to look at the background research on this subject to see the progressive
development of ideas and concepts in their historical context.* A number of authors
have discussed the establishment of the facts of the past, and the importance and
unique value of archival research in this connection is in evidence throughout all
these works, Refs. [5–8] list a few of my favorites. The history of polarized light
is a long one and exciting applications for polarization of electromagnetic waves
continue to be discovered. While I am unable in this brief review to discuss it in
* At this point it may be worthwhile to pose a general question: Does one need to know anything

about the history of polarized light to appreciate the subject matter? In fact, there seems to be
a recent trend in textbooks to include snippets of history and biography of individual scientists.
This is certainly a harmless way to add human interest to what might otherwise seem to be
“dry” physics, but may not by itself make the subject matter more understandable. It is much
easier to convey the facts of Wolf ’s life than to explain to undergraduates what he accomplished
physically. I note that aside from the human interest involved in biographical studies, there may
be some intellectual value in retracing the way optical ideas have developed. The development
is often messy, however. Occasionally good ideas emerge prematurely in obscure places and are
forgotten for a time, only to be rediscovered independently. Sometimes the original motivation
for an investigation looks a bit eccentric to later generations, as in the case of Paul Soleillet’s
approach to what we know as Mueller polarization matrices. But, in the end, one is often just
curious to know where the currently accepted ideas came from. Whatever one’s view may be
on the role of the history of optics in teaching or research, probably most people will agree that
it is more challenging to deal with the twentieth century than with the immediately preceding
centuries. Optics tends to be hierarchical, making it difficult to appreciate later work without a
substantial foundation in earlier work. Now that optics is developed more rapidly and in more
places by more people, tracing the development of an idea does not become easier.
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any depth, I shall mention three major breakthroughs to highlight recent work
in polarization optics. These are just a few of the high points; the list could be
extended much further [9].*

In the first, the evidence that light can be polarized was gleaned in 1669 by
Erasmus Bartholinus. By carefully studying crystals of Iceland spar (i.e., calcite),
he discovered double refraction. The optical properties of crystals gave the start-
ing impetus of the discipline of polarization optics. After Bartholinus’s discovery,
Huygens’s goal of research was to interpret the double-refraction phenomenon
from his conception of his spherical lightwave (i.e., envelope construction), and he
observed that each of the two beams arising from the double-refraction phenom-
enon can be extinguished by passing through a second calcite crystal that is rotated
about the direction of the beam. His investigations also showed that the two beams
have different polarization directions. In 1808, Etienne-Louis Malus, a military
French engineer, discovered the polarization of natural light by reflection while ex-
perimenting with a crystal of Iceland spar and light reflected by the windows of
the Palais du Luxembourg in Paris. By extensive experimentation, he showed by
purely geometric reasoning how to express the intensity of light emerging from
a polarizing crystal when the light it receives is linearly polarized along a direc-
tion making a specific angle with its axis, i.e., Malus’ law. A major advance in the
understanding of light polarization was made by Augustin Jean Fresnel. In 1823,
he derived on the basis of the elastic theory of ether† his famous reflection and
transmission formulas for a plane wave that is incident on a static and plane inter-
face between two dielectric isotropic media. To Fresnel credit must be assigned for
discovering the modern concept of polarization and stimulating the efforts that put
the wave theory of light on a firm foundation. In the years 1812–1815 came the im-
portant milestone by the French phycisist Dominique François Arago at the Paris
Observatory. On the theoretical side, his principal contribution was the discovery
of the interference laws published in a joint paper with Fresnel, which played a
key role in the demonstration of the transverse nature of lightwaves propagating
in free space. Another major advance to the field came by Sir Georges Gabriel
Stokes.‡ Stokes introduced four measurable quantities that now bear the name of

* A note on referencing policy: computerized literature searches citing “polarized light” as key
words find thousands of articles that are scattered through the literatures of different subareas
of physics, including optics, astrophysics, biology, and materials science. Although I have tried
to identify original key papers whenever possible, our references put more emphasis on recent
works from which earlier papers can be found. Obviously the choice of these is highly subjective
and indeed arbitrary, and I hope that the many authors whose papers I have failed to reference
will not attribute this to malice.

† The concept of an ethereal medium, filling space, was formulated by Descartes two centuries
before.

‡ The name of Stokes, a contemporary of Maxwell, has become well known to generations of inter-
national scientists, mathematicians, opticists, and engineers, through its association with various
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Stokes parameters for describing properties of polarized light. Before the entry of
the seminal electromagnetic theory of Maxwell, the gauntlet was thus thrown, and
a search for the correct physical mechanism began. During this time the predom-
inant belief in the field was that the transverse wave theory of light could provide
an understanding of the major optical phenomena discovered at the the time of
Maxwell’s treatise: propagation, polarization, diffraction, and interference. How-
ever, there was little agreement as to the details of how this worked, and in spite of
many difficulties, the mechanical theory of the elastic ether persisted.

In the next and second step based on the theory of electromagnetism, polariza-
tion properties are closely connected to the electric field vector distribution. The
quest for a better understanding of the macroscopic world in terms of underlying
fundamental microscopic laws has informed the history of science and natural phi-
losophy. The best theories are the ones that have settled, either by virtue of their
actual genesis or more commonly through their subsequent evolution, at the right
level of generality. They must be sufficiently general to encompass problems of
broad interest and generality, but not so super general as to allow for an expanse
of phenomena not amenable to any sort of reasonable taxonomy. There is of course
a litany of subjects of questionable merit that fail to satisfy one of these criteria
(and sometimes both), but in these terms it is difficult to imagine one that meets
them more spectacularly than Maxwell’s theory of electromagnetism. Modern sci-
ence has provided an admirable powerful theory, and mathematical tool as well, to
address this issue in a sensible and productive way, the gift of Maxwellian Electro-
dynamics.§

physical laws and mathematical formulas. In standard textbooks of physics, mathematics, and
engineering, we find Stokes law, Stokes theorem, and the Navier–Stokes equations, in addition to
the Stokes parameters. His major advance was in the wave theory of light. He was by then well
established at the University of Cambridge (where he spent all of his working life occupying the
Lucasian Chair of mathematics from 1849 until his death in 1903), examining mathematically
the properties of the ether, which he treated as an incompressible elastic medium. This enabled
him to obtain major results on the mathematical theory of diffraction, which he confirmed by ex-
periment, and on fluorescence, which led him into the field of spectrum analysis. His last major
paper on light was his study of the dynamical theory of double refraction, presented in 1862. As
a special comment, it is interesting to quote to the reader the leading article of The Times, which
appeared two days after his death: “It is sometimes supposed—and instances in point may some-
times be adduced—that minds conversant with the higher mathematics are unfit to deal with the
ordinary affairs of life. Sir George Gabriel Stokes was a living proof that if the mathematician is
only big enough, his intellect will handle practical questions so easily and as well as mathematical
formulas.” See also Lord Kelvin, Obituary of Sir G. G. Stokes, Nature 67, 337 (1903), and Lord
Rayleigh, Obituary of Sir G. G. Stokes, Proc. Roy. Soc. 75, 199 (1905).

§ Among the enduring legacies of nineteenth-century science, James Clerk Maxwell’s equations
of electrodynamics have long held a preferential place in the hearts of physicists. One of today’s
more outspoken physicists, Steven Weinberg, has argued that the equations constitute a noncon-
tingent fact, without which contemporary physics would be unimaginable.
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A chief contributor to the fundamental aspects of early electromagnetic theory
was the British physicist Michael Faraday. In 1831, he discovered electromagnetic
induction, subsequently explained para- and diamagnetism and interpreted them
through his field theory. When Faraday postulated the physical laws of electro-
magnetism, he had in mind a mechanical picture, deduced from geometric rea-
soning, using the two concepts of lines of force traversing all space and actions-
at-a-distance exerted between the particles in a medium. In 1864 came another
turning point: the Scottish physicist James Clerk Maxwell completed a six-page
memoir entitled A Dynamical Theory of the Electromagnetic Field, in which he devel-
oped the mathematical theory required for the description of how electromagnetic
waves propagate [10]. His eponymous equations summarize the fundamental re-
lations between electricity and magnetism and became the cornerstone on which
generations of scientists have based their theoretical studies. Maxwell put Fara-
day’s concepts into the elegant mathematical form of four differential equations,
and one of his major innovations was to introduce the notion of displacement cur-
rent. Indeed, were it not for the displacement current, it would not be possible to
deduce from Maxwell’s equations that electromagnetic waves have the property of
light. His electromagnetic theory was confirmed by Heinrich Hertz’s discovery
of electromagnetic waves,* which in turn led to remarkable advances in physics,
astronomy, and technology.† According to Einstein, Michael Faraday,‡ along with

* In the years 1887 and 1888, Heinrich Rudolf Hertz, a German physicist at the Technical Uni-
versity in Karlsruhe, produced and detected electric waves in air, demonstrating the application
of the concepts of the electromagnetism theory to the microwave and radio regions of the spec-
trum. In this respect, it is also worth noting the close intertwining of the theory and experiment in
nineteenth-century electrodynamics, which is distinguished by the fact that all leading theorists
were active in the laboratory. Today, Hertz is remembered for the unit of frequency named after
him.

† In the 19th century, the value of Maxwell’s work was appreciated by experts working on similar
problems, but in the scientific community as a whole his achievements were less famous than
those of Kelvin or Helmholtz. For example, it is amusing to note that when Albert Einstein
studied at the Swiss Federal Polytechnical School (ETH), Maxwell’s electromagnetic theory was
not covered in any of the courses there so he had to study it on his own.

‡ Writing in a special issue of the London Times in 1931 to celebrate the centenary of Michael
Faraday’s discovery of electromagentic induction, Lord Rutherford said “The more we study the
work of Faraday, with the perspective of time, the more we are impressed by his unrivalled genius
as an experimenter and a natural philosopher. When we consider the magnitude and extent of his
discoveries and their influence on the progress of science and of industry, there is no honor too
great to pay to the memory of Michael Faraday—one of the greatest scientific discoverers of all
time.” In the physical sciences, apart from inventing the dynamo and the transformer, Faraday
established the identity of electricity from various sources as well as investigating the discharges
of electricity through gases, electrostatics, electrodeposition, and discovering the magneto-optical
effect, which was the first proof that light had a magnetic component. But it is not just his ex-
traordinary experimental skills and intellectual power that has made Faraday so fascinating to all
succeeding generations; he also possessed intuition, insight and moral perfection. Aldous Huxley
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James Clerk Maxwell, was responsible for the greatest change in the axiomatic
basis of physics since Newton [11].

The publication of Poincaré’s great treatise Théorie Mathématique de la Lumière
in 1892 broke a new intellectual ground.§ In his book Poincaré introduced the
Poincaré sphere and the complex plane representations to specify the state of po-
larization. Poincaré’s heavy use of geometry, including many unfamiliar proposi-
tions, makes his analysis nearly impenetrable to the contemporary reader. But it was
Poincaré, more than any other, who truly saw the physical implications of geome-
try in polarization optics. Using a stereographic projection, he mapped each point
on the plane into a sphere whose points are in one-to-one correspondence with all
the possible states of polarization of a light beam. One of the conveniences of the
Poincaré sphere is that it provides an intuitively geometric view of the transforma-
tion of a polarized light when it interacts with optical devices in terms of rotations
of states.

Near the end of the nineteenth century, John William Strutt, the third baron
Rayleigh (more familiar as Lord Rayleigh), published many fascinating articles in
optics. One of his major contributions came in 1871, when he derived the polariza-
tion at 90-deg law, the inverse fourth-power law for the intensity of light scattered
by particles whose size is much smaller than the wavelength of the light and ex-
plained that the degree of polarization of the scattered light depends on the angle
of scattering from the elastic-solid theory of the “luminiferous ether.”

The third step in the development of a detailed, predictive understanding of
polarized light, which took place between 1905 and 1954, stands out as one of the

reflected on this “conquering man of genius” in 1925 and wrote: “If I could be born again and
choose what I should be in my next existence, I should desire to be a man of science . . . . But
even if I could be Shakespeare, I think I would still choose to be Faraday. True, the posthumous
glory of Shakespeare is greater than that of Faraday. . . . Posthumous fame brings nobody much
satisfaction this side of the grave.”

§ Mathematician of the first rank, Jules Henri Poincaré is one of France’s greatest scientific genius
of the nineteenth century, the range of his interests and achievements being hard to conceive.
He is a fruitful subject for historical enquiry, as he left behind a large archival trail. With his
polymathic interest, he has attracted much attention, e.g., H. Gispert, “La France mathématique:
La Société Mathématique de France (1870–1914),” Cahiers d’Histoire et de Philosophie des Sciences
34, 11 (1991). Poincaré made many contributions to mathematics and to other sciences, including
celestial mechanics, fluid mechanics, the special theory of relativity, and optics, to cite but a few;
he is often described as the last universalist in mathematics. As a Poincaré aficionado, I strongly
believe that the questions posed and the techniques developed to answer them are thoroughly
modern. Poincaré wrote in Mathematical Definitions in Education, Georges Carré, Paris (1904):
“It is by logic we prove, it is by intuition that we invent.” The breadth of his research led to
him being the only member of the French Academy of Sciences in every one of the five sections
(geometry, mechanics, physics, geography, and navigation) of the Academy. Note that Poincaré’s
family produced other men of great distinction during his lifetime, e.g., Raymond Poincaré, who
was prime minister of France several times and president of the French Republic during World
War I.
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most exciting advances in theoretical optics of the last half of the last century. It is
interesting to remember that, at the turn of the century, theorists believed that op-
tics was a mature field and nobody could believe that optics would return from the
physics rearguard to the forefront. The idea that polarized light is a “static” geo-
metric concept has persisted since the time of Bartholinus. One interesting thing is
that it seems that most scientists considered that the world is deterministic—in the
sense of Isaac Newton. Yet one of the thrusts of twentieth-century physics has been
that the world is not. The Heisenberg uncertainty principle, statistical mechanics,
and many other parts of the modern theory give us substantive reason to think
that certain forms of physical information are unknowable. In particular, statistical
physics is one of the pillars of modern physics, explaining the macroscopic world
on the basis of the dynamics of its microscopic components. It was only in the twen-
tieth century that polarization evolved from a geometric concept into a statistical
concept, the analysis of radiation fluctuations being powerfully addressed.

The deepest and most revolutionary insights arose from statistical physics.
These are at two levels. First is the very basic fact that probability is central to mod-
ern physics. The electric field of light is then described as a random process. The
introduction of probability into the fundamental nature of the physical world by
Maxwell and Boltzmann provided part of the foundation for the so-called “proba-
bilistic revolution”* that affected all areas of science between 1840 and 1940. At this
point, it is worth noting that James Clerk Maxwell allowed probabilistic physics to
bring him to the verge of mysticism: “It is the peculiar function of physical science
to lead us to the confines of the incomprehensible, and to bid us behold and receive
it in faith, till such time as the mystery shall open.” At that time, the use of statis-
tics as a mathematical tool of all the sciences provoked passionate disputes between
philosophers and physicists. The second level of insight is that autocorrelation and
cross-correlation functions between field variables at two space-time points were
introduced to describe correlations of random processes in electromagnetic fields.
An influential result was the introduction of the density matrix formalism by John
von Neumann, which has much to do with the coherency matrix formalism pio-
neered by Norbert Wiener in 1930.†

* The interested reader may consult The Probabilistic Revolution, edited by Lorenz Krüger, Lorraine
J. Daston, Michael Heidelberger, Gerd Gigenrenzer, and Mary S. Morgan, MIT, Cambridge,
MA (1987).

† What is seldom appreciated is that Wiener belongs to that small group of theoretical physicists
who shaped modern coherence theory. Although Wiener gave real grounds for the concept of
coherence, his ideas did not gain general recognition. To quote Levinson in Selected Papers of
Norman Levinson, N. Levinson, J.A. Nohel, and D.H. Sattinger, Eds., Vol. 1, p. 13, Birkhäuser,
Boston, MA (1998), “Most of Wiener’s important work was inspired by physics or engineering
and in this sense he was very much an applied mathematician. He formulated his theories in
the framework of rigorous mathematics and as consequence his impact on engineering was very
much delayed.”
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This brings us to the modern concept of polarization of light. Observe that the
statistical nature of quantum mechanics is different from that of classical physics,
as it invokes variables with values that are not merely unknown but unknowable.
Theorists quickly appreciated the significance of this result, and by the middle of
the twentieth century the development of this field was coming to a close. An im-
portant aspect in interpreting the statistical properties of light has been pointed out
by Emil Wolf. In 1954, Wolf launched the idea that “. . . correlation functions of
optical fields, not the fields themselves, provide a description of optical phenomena
in terms of observable quantities” [2]. The foundations of the modern polariza-
tion theory were laid. The starting point for most calculations having a bearing on
optical coherence theory is the Wolf coherency matrix. Wolf also introduced more
general three-dimensional tensors for dealing with nonplane waves. The statistical
description of the properties of light provided a key impetus for a new generation
of high precision experiments, e.g., the Hanbury-Brown and Twiss experiment.
With the year 1954 came another big step in optics, when Charles Townes and his
coworkers realized the first maser. This laid eventually the ground work for devel-
opment of the laser, but this is another story [12]. Thus in the early 1960s, the
conceptual basis of the modern theory of light polarization was thoroughly formu-
lated.

Other notable contributors in the story of polarized light are Paul Soleillet, who
is now largely forgotten but was eventually the discoverer of what we know as the
Mueller polarization matrix; Francis Perrin, whose meticulous work in the study of
the symmetry property of scattering by particles was very important; Robert Clark
Jones,§ who invented the Jones calculus in polarization optics; Hans Mueller, who
described the effect of nonimage forming optical systems and scattering media in
terms of the Mueller formalism; Edwin H. Land,† who invented the sheet po-
larizers; van de Hulst, who explained the polarization characteristics of the glory;
S. Pancharatnam, who introduced the concept of spectral functions to deal with the
description of the polarization properties of a polychromatic beam and eventually
was first to introduce the concept of geometric phase‡ in his study of the interfer-

§ Prof. Russell Chipman kindly informed readers that Robert Clark Jones is still living in the
Boston area.

† Edwin H. Land received more than 500 patents related to different areas of research, including
polarization, photography, and human color vision. The interested reader is referred to the special
issue of Optics & Photonics News 5, 9 (1994), dedicated to the memory of Land in recognition of
his pioneering contributions to science and technology.

‡ The geometric phase concerns the phase change of a light beam whose polarization state is made
to trace out a cycle on the Poincaré sphere. Its quantal counterpart was discovered by Michael
Berry, who proved the existence of geometrical phases in cyclic adiabatic evolutions. It is remark-
able that when Pancharatnam discovered this important effect, he was only 22 years of age. The
interested reader may consult M.V. Berry, Current Science 67, 220 (1994), and Geometric Phases in
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ence of light in distinct states of polarization; and Richard Barakat,* who added
the concept of spectral coherency matrix from a different point of view than the
one introduced by Wiener.

The discovery of the laser brought optics back to prominence. There followed
the discovery of of nonlinear optics, coherent optics, and quantum optics. Although
there are still open questions about the details of the quantum description of polar-
ization, considerable progress has been made. Polarization optics today has reached
maturity; certainly the future of polarization optics will be as exciting and fruitful
as the past has been.

3.2 Basic Principles and Some Applications

The above brief account suffices to set the stage for the main subject. However,
one of the most difficult parts of learning polarization optics is to get a feel for how
abstract formalism can be applied to actual phenomena in the laboratory. This sec-
tion has three basic objectives. The first of these is to clarify operationally what is
really meant by polarized light. This section does not attempt to be a comprehen-
sive review of polarized light and of its interaction with optical systems. Rather, it
is intended to be tutorial in nature, and the intended reader is a graduate student
about to embark on research, either experimental or theoretical, in this area. The
goal therefore has been to set out as clearly as possible a set of concepts basic to the
understanding of light polarization, and to discuss how they relate to existing ex-
periments. Related to this, the second objective is to lay out the physics of multiple
scattering of polarized light (in the visible range) in disordered arrays of dielectric
scatterers. The discussion is limited to the particle size and state of polarization
dependence of the depolarization lengths. The third and final objective is to ex-
plain in direct physical terms why the concept of the scalar invariant is important
to describe the second-order statistics of the electromagnetic field.

3.2.1 Polarized light: a statistical optics approach

What is the nature of polarized light? This simple question is, in fact, hard to
answer from either the theoretical or observational point of view. However, it is of
the utmost importance if we really want to detect and predict the consequences of

Physics, edited by A. Shapere and F. Wilczek, World Scientific, Singapore (1989), for historical
comments on the development of geometric phases in polarization optics.

* Barakat was a hero of mine of whom I had read many pioneering papers. When I came to Har-
vard University in the beginning of 1989 as a postdoctoral fellow, I experienced the privilege of
enjoying such collaboration. One lesson I understood from Dick’s way of working is that it is
more useful to learn from one’s peers than from one’s teachers. I have already given elsewhere,
i.e., C. Brosseau, J. Opt. A: Pure Appl. Opt. 2, R9–R15 (2000) an account of Barakat’s contribu-
tions to polarization optics.
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polarized light interacting with an optical system or a scattering medium. Before
we jump into the physics of polarized light, it will help in getting started if we have
in common a bit of vocabulary indicating what the different concepts will mean
here.

The objective of this section is not a review of the theoretical exploration of the
coherency (density) matrix, which has been done extensively in the past [4,7,8].
Instead the reader is presented with resources adequate to generate a basic famil-
iarity with the principles and language of density matrix theory. I have discussed
statistical optics concepts and their implications to polarization optics at length else-
where [5], although there is still more to say. For technical details of many of the
topics discussed here, the reader is referred to [1,4,5]. The usual development is
in terms of the coherency matrix �, but in order to deal with dimensionless forms
of the Stokes parameters we have found it convenient to employ the density matrix,
i.e.,

D ≡ �

tr(�)
,

approach, where tr denotes the trace of a matrix.
It has gradually become clear, building on pioneering contributions of Falkoff

and MacDonald [13], Fano [14], and Wolf [4,7], that the density matrix formal-
ism has a broad range of applications in the theory of partial coherence of optical
fields. Because of the close analogy that exists between the theory of partial coher-
ence and the theory of partial polarization, one might expect that the density matrix
is also a workhorse in polarization theory. In that theory, diagonal (respectively off-
diagonal) elements of the density matrix elements are interpreted as autocorrelation
(respectively cross-correlation) functions between the random components of the
analytic signal representation of the electric vector at a particular point in space. It
is worth noting that this approach is restricted to second-order statistics of the fluc-
tuating field: the polarization density matrix D is a 2 × 2 matrix (hereafter, noted
D2) and is a complete description of a Gaussian distributed plane wavefield. For a
non-Gaussian optical field, higher-order statistics of the electromagnetic field is re-
quired; however, the second-order approximation may still be a good one provided
corrections due to higher-order correlations are small. The theoretical discussions
up to now have mainly dealt with light in the form of plane waves. This is due,
in part, to the fact that the polarization states of a plane wave can be described by
means of the Poincaré sphere representation, which has a simple topology, and in
part, to the fact that the assumption of plane wave leads to results adequate for most
practical applications. Here we wish to calculate the entropy of a partially polarized
wavefield, not necessarily plane. To this end, we will consider polarization density
matrices DN for arbitrary N.
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3.2.1.1 Lie group expansion of the density matrix and Stokes
parameters

Consider a narrow band optical field that can be represented by an ensemble of
realizations, which we shall assume to be statistically stationary, at least in the wide
sense. Each realization of the fluctuating electric field vector is represented by a
complex analytic signal. The Stokes parameters, defined as the covariances of the
analytic signal components, are the observables of the field vector at optical fre-
quencies. The key mathematical idea utilized here is that the available information
on the wavefield is the density matrix that describes the second-order stochastics
of the electric field components at a given point in space. So far no assumption
has been made about the statistics that governs the light fluctuations: we limit our
description of the statistical properties of the underlying radiation fields to second
order.

By definition, DN is nonnegative definite and Hermitian: DN can be diagonal-
ized by a unitary transformation and its N eigenvalues are real and nonnegative.
On the basis of this description, we introduce the normalized Stokes parameters
�

(N)
j , which are defined by the scalar coefficients in the expansion of DN in terms

of the N2 Hermitian, trace orthogonal and linearly independent O
(N)
j matrices.

An important point to appreciate here is that these real parameters form a quo-
rum of observables that completely specify the state of polarization of the optical
field. Let us formally introduce the N × N polarization density matrix as a linear
combination of N2 independent Hermitian matrices:

DN =
1
N

N2–1∑
j=0

�
(N)
j O

(N)
j . (1)

Equation (1) is known as the special unitary group SU(N) expansion of the polar-
ization density matrix DN. It is convenient to work with a normalized version of
the Stokes parameters �

(N)
j , since they take a dimensionless form. The expectation

value of a physical observable, characterizing the light at any point, described by
the density matrix DN is given by

〈
O

(N)
j

〉
= tr

(
O

(N)
j DN

)
= �

(N)
j , (2)

where the angular brackets in the left-hand side denote the average taken over the
statistical ensemble representing the fluctuating field. Two important points should
be stressed. First, it is usually convenient that one O

(N)
j be the unit N × N matrix,

indicated as O
(N)
0 . The second important feature is the trace relations, namely the
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normalization condition

tr
(

O
(N)
j

)
= Nδj0 (3a)

and the orthogonality condition

tr
(

O
(N)
j O

(N)
k

)
= 2δjk. (3b)

For N = 2, O
(2)
j are the Pauli matrices. Other sets include the Gell-Mann matrices

for N = 3 and the Dirac matrices for N = 4. At this point it is also worth com-
menting on several important properties of DN. Scalar functions of DN that are
invariant, with respect to all transformations, DN → UDNU–1, where U is a gen-
eral unitary matrix, are the scalar invariants of DN. Simple examples are the trace
and the determinant of DN. The Cayley–Hamilton theorem implies that these ba-
sic invariant quantities can be obtained by direct evaluation of the traces of powers
of DN. The physical significance of these scalar invariants as measures of the de-
gree of polarization of the optical field is discussed in the next sections.

3.2.1.2 Entropy of a partially polarized light

We consider an optical field in the form of plane waves propagating in some direc-
tion to be characterized by the unit vector e3. The transverse field is resolved into
two orthogonal components along the directions characterized by the unit vectors
e1 and e2 corresponding to orthogonal linear polarizations. Note that all matrix
quantities will be defined in this linear polarization basis. At this point, we recall
that we employ normalized Stokes parameters 〈σj〉 = Sj/S0, where Sj, j = 0, 1, 2, 3
is the notation for the usual Stokes parameters having the physical dimensions of
intensity (or irradiance). The physical interpretation of these parameters is as fol-
lows: S0 is the total intensity, S1 describes the excess of linearly horizontal polarized
light over linearly vertical polarized light, S2 specifies the excess intensity of 45 deg
linearly polarized light over –45 deg linearly polarized light, and S3 is the excess
of right over left circularly polarized light [1,5].

Our starting point is the von Neumann entropy S of the radiation field in the
impure (mixed) state represented by the density matrix D2, which is defined ac-
cording the usual dimensionless version appearing in quantum statistical mechan-
ics as

S = –tr
[
D2ln(D2)

]
, (4)

where the density matrix reads, in the linear polarization basis, as

D2 =
1
2

[
1 + 〈σ1〉 〈σ2〉 – i 〈σ3〉

〈σ2〉 + i 〈σ3〉 1 – 〈σ1〉
]

. (5)
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The von Neumann measure is a quantitative measure of the amount of information
that would be gained by switching from a mixed state to a pure state. This orthog-
onal decomposition is the most economical representation of D2 (in the sense of
entropy minimization) [5]. Several properties of S are of importance for us. First,
it is worth observing that Eq. (5) is basis independent (i.e., the entropy remains
invariant under a similarity transformation of the density matrix D2 → RD2R–1).
This is expected since polarization properties must be unaffected by the particular
choice of basis. Second, we note that the mapping of D2 → S(D2) is concave: the
entropy of a mixed state is greater than the constituent entropies weighted as in
the mixing. Consequently, taking linear combinations

∑
j pjD2j of density matrices

D2j with real positive coefficients 0 ≤ pj ≤ 1 summing to unity
∑

j pj = 1, we have

∑
j

pjS(D2j) ≤ S(D2) ≤
∑

j

pjS(D2j) –
∑

j

pjln(pj). (6)

Equation (6) is an optimal inequality in the sense that equality holds on the left if
all D2j are equal, and on the right if all D2j have disjoint support. Let us remark
in passing that both matrices D2 and ln(D2) are diagonalized by the same unitary
transformation; this comes from the fact that D2 commutes with ln(D2).

Given these background remarks, we now sketch two simple approaches for
deriving the degree of polarization dependence of the radiation entropy. Actually,
the methods complement each other in that the first approach involves an eigen-
value problem, whereas the second approach involves a geometric property of the
set of polarization states. To begin with, we express Eq. (4) differently in the rep-
resentation in which D2 is diagonal. Denoting the eigenvalues of D2 by λj, the
entropy can be expressed, via Eq. (4), as

S = –
∑

j

λjln(λj). (7)

Consequently the problem shifts to the analytic evaluation of these eigenvalues. In
this case, computation of these eigenvalues via Eq. (5) gives

λj =
1 ± P

2
, (8)

where we have set

P =


 3∑

j=1

〈σj〉2




1
2

,
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which is the degree of polarization of the plane wave. Now by substituting Eq. (8)
into Eq. (7), the result takes a relatively simple form, namely,

S(P) = –ln[s(P)], (9)

with

s(P) =
1
2

[1 – P]
1–P

2 (1 + P)
1+P

2 . (10)

Thus a closed-form equation has been arrived at: it is a measure of purity of the
states of polarization. Equation (9) demonstrates that one needs only a single para-
meter, P, to characterize the entropy of a radiation field in the form of plane waves.
The entropy varies between 0 and ln(2) inclusive and is displayed in Fig. 1 as a
function of the scalar invariant. From Fig. 1 we observe that the curve undergoes a
monotone decrease as the degree of polarization is increased. It does not differen-
tiate pure states, i.e., irrespective of the form of the pure state of polarization con-
sidered, linear or circular, we have S = 0. These symbols denote respectively linear
horizontal, linear vertical, linear +45 deg, linear –45 deg, right-handed circular
and left-handed circular states of polarization. Minimum entropy states define the
pure states and are located at the surface of the so-called Poincaré sphere. An-
other interesting limit is obtained by considering the maximum entropy state cor-
responding to the completely unpolarized state, located at the center of the ball �3

1 .
In all other cases such 0 < S < ln(2), mixed states are the points inside the ball
�3

1 [5]. As pointed out earlier, this property reflects the isotropy of the Poincaré
sphere �2

1 (Fig. 2).
An alternative approach to the computation of the entropy is via the convex-

ity property of the states of polarization (Fig. 3). This property is of a topological
nature and may be simply visualized through the Poincaré sphere representation

Figure 1 Plot of the entropy S as function of the degree of polarization P, i.e., scalar
invariant tr(D2

2), of a plane wave.
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Figure 2 The Poincaré sphere �2
1 is the unit sphere surrounding the origin of the

Cartesian coordinate orthonormal basis (e1, e2). The normalized Stokes parameters
[〈σ1〉, 〈σ2〉, 〈σ3〉]T constitute the components of the Poincaré vector u that represents
the state of polarization of an arbitrary pure state of polarization (|u| = 1). The longi-
tude 2ψ and latitude 2χ of point M are related to the azimuth and the ellipticity angles
of the polarization ellipse of the wave. Each point on �2

1 corresponds to a unique state of
polarization. The north pole N ([0, 0, 1]T ) represents left circularly polarized light. The
south pole S ([0, 0, –1]T ) represents right circularly polarized light. Points on the equator
(2χ = 0) represent linearly polarized light. Elliptical polarization states lie between the
poles and equator. The positive directions of the angle 2ψ and 2χ are defined according
the adopted sign convention.

embedded in the three-dimensional Stokes space. For instance, the Krein-Millman
theorem, which states that a compact convex set is completely determined by its ex-
treme points, implies that every mixed state can be written as a nonunique convex
combination of pure states. States of polarization specified by D2 form a convex
set with pure states being the extremal points of the set. Here the convex set of
states possesses two strata of dimensions 2, �2

1 , and 3, �3
1 , respectively [5]. We

can also state a useful theorem that will be employed in the subsequent analysis:
any mixed state can be uniquely decomposed into a purely polarized part and an
unpolarized part. The relative weight of each component is determined by the de-
gree of polarization P. Thus the density matrix of any mixed state is given by a
convex sum

D2 = PD2p + (1 – P)D2u, (11)

with D2u = 1/2σ0. Once this is done, it becomes straightforward to derive the
entropy. Upon substituting Eq. (11) into Eq. (4), we explicitely obtain Eq. (9).
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Figure 3 Schematic illustration of the convexity property of the set of polarization states
on the unit ball �3

1 . Pure states correspond to surface points (e.g., A) and mixed states
to interior points (e.g., M). The partially polarized state, described by point M, is repre-
sented by the vector OM whose length is the degree of polarization P.

3.2.1.3 Thermodynamics of a radiation field

Before we can proceed any further, we are naturally led to inquire whether a more
general thermodynamic treatment of partial polarization exists. The purpose of this
section is to present such treatment. We first wish to introduce the analogy of the
two-level description of a partially polarized wave with a one-dimensional Ising
spin system in contact with a heat bath. The Hamiltonian assigned to a particular
configuration of spins is –J

∑
〈ij〉 σiσj, with each site ri having a spin σi = ±1.

The expression 〈ij〉 refers to nearest neighbors i and j sites and J stands for the
spin-spin coupling. After some calculations, it can be shown that the entropy per
spin of such a one-dimensional system may be expressed as

S(y)
Nk

= ln[2cosh(y)] – ytanh(y), (12)

where y = Jβ, β = 1/(kT) is the inverse temperature and k is Boltzmann’s con-
stant [5,16]. By a straightforward calculation, Eq. (12) can be verified to be iden-
tically equal to Eq. (9) if one makes use of the following expression:

1
τ

=
1
2

[
ln
(

1 + P
1 – P

)]
, (13)

and sets τ = kT /β, which defines an effective polarization temperature. It is to be
emphasized in connection with Eq. (13) is that it should not be confused with the
radiance temperature obtained using Planck’s spectral law. In Fig. 3 we depict the
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behavior of P as a function of P. We first observe that τ is a monotonic decreasing
function of P. It also clearly shows that τ ∼ P–1 for very small values of P and
we observe a dramatic change as P approaches 1 from below. At this point two
comments are in order. Just as in the study of the Ising system, one can determine
the thermodynamic functions for the partially polarized radiation field. Using the
thermodynamics of the canonical ensemble the partition function is given by

Z = 2(1 – P2)– 1
2 . (14)

Equation (14) can be used to find other thermodynamic quantities such as the free
energy and the internal energy [5,16]. Similarly, as one defines in thermodynamics
the equilibrium temperature such as 1/T = ∂S/∂U, we may prove that the polar-
ization temperature verifies 1/τ = ∂S/∂U = –∂S/∂P. The “specific heat” can be
found by a simple expression:

C =
1 – P2

τ2 . (15)

For later purposes it will be also useful to consider a correlation length by analogy
with the Ising model. We assume a finite correlation length, for S(r), where as
usual is defined by the following expression

〈S(ri)S(rj)〉 ∼ exp
(

–
|ri – rj|

ξ

)
. (16)

Upon making the substitution, we found that the correlation length behaves as
[ln(P)]–1. At small P, we therefore expect the correlations to decay to zero. We
will use this expession explicitly in Sect. 3.2.2.2.

While interest has been focused here on the plane wave solution (N = 2), it
is interesting to note that Brosseau [5] has recently discussed the general case
and showed that the entropy depends N – 1 scalar invariants and not on the full
N invariants. In this author’s opinion, there is no clear a priori justification to
study, for partial polarization purpose, high dimensions (N > 3) of the SU(N)
parametrization. However, calculations by Brandenberger et al. [17], have shown
that the entropy of stochastic fields with many degrees of freedom has interesting
applications in general relativity and cosmology; thus an a posteriori justification
for its interest can be claimed.

To summarize, this section contains two important features that motivate our
formal considerations below. First, we introduced the concept of scalar invariant.
This is undoubtedly the most remarkable property of the density (coherency) ma-
trix description of the electromagnetic field. Conceptually, this is the connection
between the geometric definition of polarized light and its algebraic representation
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in terms of second-order statistical moments. Second, we found that these scalar
invariants completely define the entropy of the stochastic radiation field. Thus, we
anticipate that depolarization is connected to a process of entropy production.

3.2.2 Multiple scattering of polarized light by spherical diffusers

Apart from these interesting problems, a long-term goal of our investigations is the
explicit consideration of polarization effects in multiple scattering of light. Multi-
ple scattering of an initially pure state of polarization from a slab composed of
randomly distributed scatterers gives rise to observable phenomena that cannot be
explained by single-scattering arguments. Scattering and absorption by particles is
traditionally handled using Rayleigh or Mie theories.

We now come to the important problem of characterizing the entropy pro-
duced by a depolarizing radiation/matter interaction. Despite intensive studies of
this problem, progress in this area has been slow. There have been some efforts
to determine the entropy transformation by scattering in specific cases, but no rig-
orous calculation of the entropy production has been presented in the context of
multiple scattering of light by randomly positioned ensembles of particles.

In recent years, new physical effects have been identified in elastic multiple
scattering of light by ensembles of particles, e.g., significant backscattering en-
hancement observed in the form of a well-defined narrow peak in the angular dis-
tribution of the far-field intensity of the incoherent component of the scattered light
at scattering angles near 180 deg [18]. In this section, quantitative expressions are
derived for the degree of polarization when incident light in the form of pure states
is incident on a spatially random optical medium. The purpose of this section is to
analyze in detail the behavior of entropy production during the irreversible evolu-
tion of the state of polarization. More specifically, we investigate the consequences
of multiple scattering of light by a dense random collection of dielectric spheres on
entropy production.

It should be noted, at the outset, that this situation differs from those consid-
ered by Enk and Nienhuis [19], and Eu and Mao [20]. The former were mostly
interested in investigating the connection between entropy production and kinetic
effects of light on atoms or molecules, such as laser cooling and macroscopic flows
in gases. The latter introduced a set of semiclassical Boltzmann equations to de-
scribe the interaction of a nonequilibrium photon (ideal) gas with matter. What we
are principally concerned with is the relation of the depolarization of an incident
pure state of polarization to a process of entropy production and the determina-
tion of its characteristic length scale. Most of the theoretical work on the transport
properties of multiple scattered light has used two characteristic length scales: the
elastic mean-free path �, and the transport mean-free path �*, which is defined as
the length over which momentum transfer becomes uncorrelated. Using a Monte
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Carlo simulation, we discovered recently that another length occurs in the prob-
lem, the depolarization length ξ i (the index i = L, C refers to linear and circular
incident pure states of polarization) [21].

There have been two different approaches to the important problem of
irreversibility of light scattering. The first approach was initiated by Chan-
drasekhar [22] and Rozenberg [23] many years ago on the basis of the Boltz-
mann equation for an isotropic scattering medium and followed by Callies [24]
and by Gudkov [25]. The second approach was initiated by Jones [26]. In the
first approach, a kinetic theory for treating the optical transport by a phenomeno-
logical radiative transfer approach has been introduced. In these theories, use of
a statistical description for the covariances of the field by the Bethe-Salpeter inte-
gral equation characterizes irreversibility in the multiple scattering process. It was
also shown theoretically, not long ago, that the Bethe-Salpeter equation under the
ladder approximation of uncorrelated discrete scatterers results in the usual vector
radiative transfer equation [22,27–30]. In the second approach, the author had a
particular objective: he wished to understand what is different between reversible
(e.g., specular reflection of a plane wave incident on a plane surface between two
homogeneous isotropic media) and irreversible (e.g., wave scattering by an inco-
herent array) manipulations of waves. As an additional comment, we note from
these earlier studies that the entropy production criterion in the context of multiple
scattering of waves by a disordered dielectric medium is a topic that has not been
explicitely investigated.

Propagation and scattering of electromagnetic waves in an inhomogeneous
medium depends critically on the ratio between the wavelength and the scale
lengths of the inhomogeneities. We emphasize at the outset that wave transport
through a medium with randomly positioned scatterers can be characterized by
a set of significant scale lengths. The first scale is the thickness d of the optical
medium. The second scale is the elastic mean-free path � = 1/(φσ), i.e., the av-
erage length the wave travels before it suffers an elastic collision. Here φ is the
concentration of scatterers and σ is a scattering cross section. The third scale worth
considering is the transport mean-free path �*, which is defined as the average dis-
tance over which momentum transfer becomes uncorrelated; i.e., the wave propa-
gates a distance of the order of �* before it forgets completely about its initial direc-
tion of propagation. The fourth scale is the wavelength λ. The fifth scale is the size
of the scatterers, namely a. Note that in the general case of a polydisperse system,
the size, shape, and refractive index distributions of the scatterers are characterized
by a distribution of lengths. We will find it useful to introduce a dimensionless
size parameter qa, where a is the radius of the particles and q is the wavenumber
of the wave. Waves with short wavelengths see a smoothly varying medium, while
long waves essentially do not feel the inhomogeneities. We would like to outline
here why the sixth scale, i.e., the length ξ of the path over which a polarized wave
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becomes depolarized, emerges from this analysis and how it depends on whether
it is initially linearly or circularly polarized, of the size of the particles, and of the
anisotropy of the diffusers that scatter light.

If d ≤ �*, the inhomogeneities in the medium give rise to only weak elastic
scattering. Consequently most of the incident wave is unscattered upon emerg-
ing from the sample. The single scattering events dominate; thus, the scattered
wave can be conveniently described by the Born approximation in standard scat-
tering theory. At the opposite multiple scattering regime d � �* (but still in the
weak-localized regime λ � �*), a wave scatters many times before emerging from
the sample. The unscattered component of the transmitted wave is exponentially
attenuated, by a factor exp(–d/�*). The typical number of scattering events by a
particular wave propagating across the sample is ∼ (d/�*)2 � 1.

The remainder of this section is organized as follows: we specialize our discus-
sion to the case where the radius of the particles is much smaller than the wave-
length of light in the supporting medium (Rayleigh regime), then the results es-
tablished earlier for the Rayleigh regime in terms of the Mueller scattering matrix
are extended to treat the Mie regime.

3.2.2.1 Rayleigh scattering

In this section we want to study the propagation of an incident pure state of polar-
ization in a medium with randomly positioned particles such that multiple scatter-
ing effects cannot be neglected. We present a self-contained review of the physics
behind the scattering of electromagnetic radiation from a pointlike suspension. The
derivation here focuses on the problem of determining the full Stokes vector for a
multiple scattered wave.

Let us suppose a quasi-monochromatic, of mean frequency ν0, plane wave is
incident onto the left side of a scattering three-dimensional random medium that
occupies a finite volume � in free space, as displayed schematically in Fig. 4. The
output wave intensity pattern will be a complicated speckle pattern. To describe
the scattering of a polarized lightwave we use a right-handed Cartesian coordinate
system, referred to as the laboratory reference frame. Figure 4 shows a possible
path of a wave entering normally to the system. A useful physical picture for the
propagation of the wave as it enters the sample is one in which a wave undergoes
a random walk. Each trajectory is composed of straight-line segments and sudden
interruptions that randomly change the wave’s propagation direction. The average
length of each random typical step is the mean-free path �. In the weakly scatter-
ing regime, i.e., λ � �*, the wave intensity satisfies the classical diffusion equa-
tion. Then for distances that are much larger than �*, beyond which the direction
of light propagation is randomized, light transport can be regarded as a diffusion
process with diffusion constant D = 1/3v�*, where v is the transport velocity, i.e.,
the speed of light in the medium. For pointlike scatterers, v is equal to the phase
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Figure 4 Schematic diagram and notation relating to the scattering geometry. An inci-
dent field, in the form of plane waves is scattered by a nonabsorbing medium that occupies
a finite volume � and of thickness d, consisting of uncorrelated spherical pointlike parti-
cles (Rayleigh scattering). Typical scattering path executing zigzag random walk through
the medium (propagating “channel”). The mean free path � is the typical step size.

velocity, which is approximately equal to the velocity of light divided by the index
of refraction. It is worth mentioning that, unlike the transport mean-free path �*

that is obtained experimentally from steady-state measurements, the diffusion con-
stant D is obtained from dynamical measurements. The density of scatterers must
be small enough to allow the weak scattering approximation to be valid.

Besides being nonabsorbing, the scattering medium is assumed to be time-
invariant, nonmagnetic, spatially nondispersive, and such that the spatial fluctua-
tions of its dielectric susceptibility uij(r) tensor are statistically homogeneous and
stationary in space (at least in the wide sense). The incident and scattered beams
are normal to the surfaces of the scattering medium and the coordinates system
lies parallel to the slab faces. Typical realization of such medium would be a col-
lection of discrete pointlike, optically inactive scattering centers whose size is very
small compared to the wavelength of the scattered radiation (i.e., qa � 1). This
approximation permits the small sphere to be treated as a dipolar oscillator with its
polarizability determined by the optical constants of the particle.

We also assume that the temporal fluctuations of the scatterers are sufficiently
slow relative to the period of the field oscillations so that the scattering medium
behaves as if it is essentially time-invariant (i.e., adiabatic approximation). The
usual boundary conditions require continuity of the magnetic field H and tangen-
tial electric field at every discontinuity surface. From the above assumptions, we
may characterize the dielectric susceptibility of the three-dimensional medium by
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uij(r) = u(r)δij, of zero mean and white-noise correlation function:

〈u(r1)u(r2)〉 = uδ(r1 – r2) when r1 ∈ � and r2 ∈ �

= 0 otherwise, (17)

where u is a constant that is a measure of the scattering potential. Let us add
a further condition: we will consider only weak disorders such that the elastic
mean-free path � = 6π/(uq4

0) is much larger than the wavelength of the radiation
(i.e., q0� � 1), q0 is the free space wavenumber associated with the frequency ν0;
consequently, the wavefield propagation may be described by a classical diffusion
process. Finally, we assume that the fluctuations of the medium and the fluctua-
tions of the incident field are statistically independent. These restrictions do not
present severe difficulties to experimental practice.

All information about an elastic scattering process is contained in the 16-
element Mueller matrix. A number of restrictions are placed at the outset on the
form of the M-matrix depending on the symmetry and reciprocity requirements.
On the one hand the Mueller matrix should show Perrin symmetry that holds
for elastic scattering from isotropic suspensions of particles; i.e., in that case M is
diagonal for normal incidence. On the other hand, the optical medium is nondis-
sipative. Upon introduction of these symmetries, the general form of the Mueller
matrix M can be written [5] as

M =




1 0 0 0
0 m11 0 0
0 0 m11 0
0 0 0 m33


 . (18)

Now we analytically evaluate the elements mii, i = 1, 2, 3 in Eq. (18) by an argu-
ment of maximum entropy. We proceed as follows. The entropy production per
scattering reads as

�S(n) = S[P(n + 1)] – S[P(n)] = hs(n), (19)

where P(n) denotes the degree of polarization after n + 1 scattering events. Here
S(P) is given by Eq. (9) and the subscript s indicates that hs depends on the partic-
ular state of polarization. With the help of Eq. (19), the total entropy production
after n + 2 scatterings reduces to

�S = S[P(n + 1)] – S[P(0)] =
n∑

j=0

hs(j) = ln
(

s[P(0)]
s[P(n + 1)]

)
. (20)
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The function hs(x) is taken to be a monotonically decreasing function from hs(0)
down to zero; this is to be expected from the theory of irreversible thermodynamics.
We are seeking a candidate function hs(x) in the metric space L2 and satisfies the
condition h′′

s (x) > 0, where the prime indicates differentiation with respect to x. At
this point it is necessary to postulate the functional form of hs(x): we have chosen
to work out the function hs(x) = ψexp(–χx), which meets the above requirements.

Next, we consider an incident pure state of polarization that is linearly polarized
[Pn+1 = m11(n)]. From Eq. (20), we arrive at the relation

s(m11) = exp


–

n∑
j=0

hs(j)


 = exp

{
–ψ

[
1 – exp(–χn)
1 – exp(–χ)

]}
. (21)

This is equivalent to saying that

m11(n) = s–1


A

n–1∑
j=0

Bj


 , (22)

where we have set for notational convenience A = exp(–ψ) and B = exp(–χ).
We call attention to the important fact that B can be written from Eq. (6.4) as
B = 1 – S[P(1)]/ln(2): consequently B is fully determined by double scattering.
Moreover when maximum entropy is achieved (i.e., in the limit n → ∞), we re-
quire that A1/(1–B) = 1/2; i.e., in the limit n → ∞. Putting everything together, we
get the final expression for m11:

m11(n) = s–1
(

2(Bn–1)
)

. (23)

Physically this procedure allows the successive orders of iteration to be ex-
pressed in terms of the sole parameter B. It is worth noting that the same formula
will apply for a pure state which is circularly polarized [i.e., Pn+1 = m33(n)] with
a change in the value of B. Note that this method is quite general and may be used
for more involved Mueller matrix, but it does not tell us what kind of trial func-
tions hs(x) are to be used. This maximum entropy argument can incorporate any
function hs(x) that satisfies the physical constraints.

Now that we have the above result, we can compare with the exact result. The
problem shifts to the explicit calculation of the dependence of the degree of polar-
ization of light in function of the number of scattering events when the medium
fulfills the assumptions stated above. Indeed, one can evaluate exactly the Mueller
matrix elements mii(n) by the Bethe-Salpeter equation handled in the latter approx-
imation. We emphasize that this derivation is valid over distances greater than the
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mean-free path. The problem of evaluating the coherency matrix reduces to a ma-
trix eigenvalue problem. We leave the details of formulas to the references [5,21].
Next we consider a pure state of polarization and arbitrary degree of spatial co-
herence, of unit intensity incident normally on the slab-shaped medium; its Stokes
vector writes as follows:

Si =




〈|E1|2
〉
+

〈|E2|2
〉

= 1
〈σ1〉 =

〈|E1|2
〉
–
〈|E2|2

〉
〈σ2〉 =

〈
E*

1E2 + E1E*
2
〉

〈σ3〉 = i
〈
E*

1E2 – E1E*
2
〉


 . (24)

In the limit of weak scattering, the linear response of the scattering medium is
determined by the ensemble averaged covariance satisfying the Bethe-Salpeter
equation [5,21]. Following this approach, we obtain the expression for the out-
put Stokes vector:

So =




1
〈σ1〉 m11(n)
〈σ2〉 m11(n)
〈σ3〉 m33(n)


 , (25)

where the subcripts 1, and 2 label components with respect to the Cartesian co-
ordinate system chosen, m11(n) = 3(7/10)n/[2 + (7/10)n] and m33(n) = 3(1/2)n/
[2 + (7/10)n]; n + 1 being the number of scattering events. It is readily veri-
fied from Eq. (25) that the Mueller matrix of the scattering medium has the kind
of symmetry we expect from Eq. (18). Having found the form of the Stokes vec-
tor So, we might naturally inquire as to what form the output degree of polarization
has. From Eq. (25), Po takes the form

Po = m11(n)

[
〈σ1〉2 + 〈σ2〉2 + 〈σ3〉2

(
5
7

)2n
] 1

2

, (26)

which involves three independent parameters.
Several comments may be in order. This equation is in accordance with the fact

that single scattering (i.e., n = 0) by pointlike particles having spherical symmetry
preserves the state and degree of polarization. For concreteness, it is worthwhile to
specialize Eq. (26) to some special cases of interest. For instance, an input linear
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Figure 5 Degree of polarization of scattered light as a function of the number of scat-
terings n (Eq. [28]) for an input pure state of linear parallel polarization (solid line), right
circular polarization (dashed line).

polarization state (E = e1) has for output Stokes vector




1
m11(n)

0
0


 ,

degree of polarization Po = m11(n), which is a monotonically decreasing function
of the number of scattering (see Fig. 5). Similarly, for an input right-handed cir-
cular polarization state [E = (1/

√
2)(e1 – ie2)], one gets:




1
0
0

m33(n)


 ,

Po = m33(n). Then, the two functions m11 and m33 have clear physical meanings.
A curve showing the behavior of m33(n) is also shown in Fig. 5. The process of
depolarization cannot be assimilated to an isotropic contraction of the Poincaré
sphere but induces a symmetry breaking, i.e., the symmetry of SO(3) is broken.
Figure 6 illustrates the asymmetric depolarization, as n is increased, through the
change of symmetry of the surface SP(n)

2 passing from a sphere (n = 0) to a prolate
ellipsoid (n > 0).
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Figure 6 Parametric plots of the surface SP(n)
2 for different values of the number of scat-

tering events n. Rayleigh scattering by pointlike dielectric spheres: (a) n = 0, (b) n = 2,
(c) n = 4, and (d) n = 6.

Figure 7 Entropy production �S(n) = S[P(n + 1)] – S[P(n)] as a function of the
number of scattering events. Same symbols as in Fig. 5.

To further discuss the physical significance of these results, we have also plotted
the variation of the entropy production �S(n) = S[P(n + 1)] – S[P(n)] with the
number of scattering events (Fig. 7). As can be seen, �S(n) is well represented by
an exponential decay �S(n) = aexp(–bn), with a and b depending on the particular
state of polarization. For large values of n (say, n ≥ 10), the entropy of radiation
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is unaffected by further scattering, it defines the steady state of maximum entropy
[S(P = 0) = ln(2)] attainable by multiple scattering. In closing it is worth ob-
serving that in the limit of large number of scattering events, Eq. (18) approaches
the Mueller matrix of an ideal depolarizer [5]

lim
n→∞ M =




1 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0


 . (27)

3.2.2.2 Mie scattering

Thus far the analysis in the previous subsection has been confined to situations in
which the size of the scatterers is very small relative to the wavelength of the prob-
ing radiation, i.e., Rayleigh region. We now focus attention on a natural extension
of the theory to cover the interesting situation of scattering by objects whose size is
of the order of the wavelength or larger. A computational Monte Carlo algorithm is
used to perform a simulation of the complete Stokes parameters for multiple scat-
tered radiation in an inhomogeneous system composed of uncorrelated spherical
particles. These simulations indicate that the amount of depolarization generated
from multiple scattering depends on such factors as the size and shape distribution
and index of refraction. The primary aim of this subsection is to present a theory
for predicting the effect of particle size on the quantity of our primary interest, i.e.,
the degree of polarization, which is then compared with Monte Carlo simulation
studies. These numerical results are compared to measurements on suspensions of
polystyrene latex spheres in water.

The method of Monte Carlo simulation is well known in the context of statis-
tical mechanics and condensed-matter physics; for a recent review see Lewis and
Miller [31]. The Monte Carlo modeling technique provides a way of finding so-
lutions to multiple scattering effects by tracing histories, i.e., sequences of events,
that statistically occur to waves propagating through an optical medium. The fol-
lowing is a develoment of such a method. Here we are particularly concerned about
the size parameter and optical depth dependences of the characteristic lengths of
depolarization. A recent review article on Monte Carlo results that is complemen-
tary to the present subsection was presented by Bruscaglioni and colleagues [32].
The mathematical and statistical assumptions inherent in this procedure are well
known in the literature and are not covered in depth in this subsection.

In this numerical experiment, one generates a realization of the random
medium and calculates the resulting wavefield. We have used the SLAB Monte
Carlo simulation code to analyze the depolarization behavior of a wave propa-
gating through a slab of finite thickness and composed of uncorrelated spherical
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particles [21,33]. This simulation technique was developed to study the three-
dimensional random walklike multiple scattering process of the wave propagation.
In the SLAB code, the three-dimensional paths for waves are followed from one
scattering to the next as the wave propagates into the medium. Each scattering is
assumed to be elastic and is described by the standard Mie theory. A single nu-
merical simulation consists in launching some number of waves, at a source, along
a specified axis. Referring to Fig. 4, a typical scattering path consists of a series
of linear translations of random length (of average value equal to the mean-free
path �), each of which is followed by a change of flight direction. Selection of the
new flight direction is made by generating a random number from a scattering dis-
tribution function. The numerical implementation of this algorithm was checked
through comparison with the Rayleigh regime, for which exact analytic results are
known. The theoretical details pertinent to the testing of the Monte Carlo code are
reviewed in Martinez [33].

We still assume in our subsequent discussion that the situation of weak scat-
tering limit and absorption can be regarded as negligible. Consider a quasi-
monochromatic plane wavefield that is incident normally along the x3 axis upon
a plane-parallel slab, of finite thickness d (d � �) and of infinite extent in the
x1, x2 directions, composed of uncorrelated spherical particles of radius a (Fig. 4).
We begin by computing the degree of polarization of the light transmitted by the
scattering medium for incident linearly (PL) and circularly (PC) polarized light.
To do this, one must evaluate the different contributions of light following many
different paths. Take a particular sequence of scattering events. The number of
steps in this path of length s is n = s/�. The number of scattering paths of length s
is simply given by the Green’s function G(n, d) of the diffusion equation. The de-
grees of polarization are given by a proper weighting G(n, d) of scattering paths of
length s. The resulting expressions are

Pi =

∫ ∞

0
fi(n)G(n, d) dn∫ ∞

0
G(n, d) dn

, (28)

where we have adopted the notation i = L for linear and C for circular states
of polarization. In the multiple scattering regime, the functions f express the de-
pendences of the output degrees of polarization for a number of scatterings equal
to n + 1. In the large n limit, the f ’s simply reduce to

fL(n) ∼= 3
2

exp
(

–n
�

ζL

)
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and

fC(n) ∼= 3
2

exp
(

–n
�

ζC

)

[21]. The ζ’s define characteristic lengths of depolarization for a path of n + 1
scatterings: ζL = �/ln(10/7) and ζC = �/ln(2). From the numerical values of the
ζ’s we find that ζL

∼= 2ζC. Upon performing the integration in (28), we obtain

Pi =
d
�

sinh
(
�/ξ i

)
sinh

(
d/ξ i

) , (29)

where ξ i = (ζi�/3)1/2, with i = L, and C defining the characteristic lengths of
depolarization for the slab geometry for linear and circular states of polarization,
respectively. Since d � ξ i, the degree of polarization of the transmitted light in the
far field can be approximated by

Pi
∼= 2d

�
sinh

( �

ξ i

)
exp

(
–

d
ξ i

)
. (30)

Thus we see that the characteristic length of depolarization for incident linearly
polarized light is greater (by a factor of

√
2) than the corresponding length

for incident circularly polarized light. This analysis should apply equally well
for large spheres provided that � is changed into the transport mean-free path
�* = 1/(φσ*) = �/[1–〈cos(θ)〉], where 〈cos(θ)〉 is the mean cosine of the scatter-
ing angle θ, and that the appropriate size dependence of the f ’s is inserted therein.
Here the transport scattering cross section for each scatterer is defined in the usual
way as σ* =

∫
�

σ(θ)[1 – cos(θ)]d�.
We now move on to the numerical results. Through the use of the above nu-

merical algorithm, a set of different simulations was performed to investigate the
effects of the particle size and medium thickness. The input parameters are the
relative refractive index, m = nS/nM = 1.20, where nS and nM are the refractive
index of the spheres (nS = 1.59 for polystyrene) and of the surrounding medium
(nM = 1.33 for water), the size parameter qa and k�* = 1000. These parameters
were chosen for the purpose of comparison with experimental data. The experi-
ments were carried out at room temperature, using a setup similar to that described
in Bicout and Brosseau [21], which contains all relevant details. A semiconductor
laser emitting at 0.67 µm was used as the source beam. The beam was normally
incident on one side of the sample (3-mm thickness) and the scattered light trans-
mitted through the back wall of the sample cell was detected within a solid angle
of collection of 2 deg. The scattering medium consists of various concentrations
of polystyrene spheres (PolySciences, Inc.), with mean diameters of 0.22, 0.48,
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and 1.05 µm, and which were mixed into filtered distilled water and serve as the
scattering centers.

Results of simulations that were carried out are presented in Figs. 8–12. For a
starting point, we refer to Eq. (30) and find, in the limit qa � 1, that ξL = 0.967�

and ξC = 0.684�. The wave becomes depolarized over a distance that is of the or-
der of the mean-free path. Now examine Fig. 8, which shows the degrees of polar-
ization for linearly and circularly polarized light as a function of d/� for qa = 1.19
(i.e., intermediate Rayleigh-Mie region) and qa = 6.43 (Mie region) in a semi-
logarithmic plot. The curves of Fig. 8 exhibit linear behavior in this plot. It is
interesting to observe that the effect of the input polarization state in these re-
gions is markedly different from that in the Rayleigh region. It is important to
appreciate that for qa ∼ 1, the slopes of these plots do not depend on the inci-
dent state of polarization. This is in contrast with the region qa > 1, for which
these slopes (�/ξi) now depend strongly on polarization: the slope being greater
for linearly polarized light than for circularly polarized light. Having considered
the numerics, we now proceed to compare with data from measurements on sus-
pensions of polystyrene-latex spheres. Variations of the degrees of polarization for
three values of the size parameter, viz., qa = 1.23, 2.69, and 5.89 are shown in
Fig. 9. It is remarkable that the experiment gives an exponential decay over sev-
eral decades. The behavior of these data is consistent with the simulation results
of Fig. 9. Figure 10 shows the characteristic lengths of depolarization for inci-
dent linearly, ξL/�, and circularly, ξC/�, polarized light as a function of the di-

Figure 8 Semilogarithmic plot of the degrees of polarization for linearly polarized
(open symbols) and circularly polarized (filled symbols) light as a function of the opti-
cal depth d/�. Squares are for the intermediate region qa = 1.19 and circles correspond to
the Mie region qa = 6.43. The lines are exponential fits to the data.
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Figure 9 Same as Fig. 8. Experimental data correspond to measurements on suspensions
of polystyrene-latex spheres in water (0.22 µm (circle), 0.48 µm (triangle), and 1.05 µm
(square)).

Figure 10 The characteristic lengths of depolarization, ξL/�, for linearly polarized
(square) and, ξC/�, for circularly polarized (circle) light as a function of the dimensionless
size parameter qa, as calculated by Monte Carlo simulation. Filled symbols indicate exper-
imental data corresponding to measurements on suspensions of polystyrene-latex spheres
in water. The inset shows the ratio of the characteristic lengths ξL/ξC (open diamonds)
as a function of qa. Experimental data (full diamonds) correspond to measurements on
suspensions of polystyrene-latex spheres in water. One sees that there is a good agreement
with experiment. The solid curve shows the variation of �*/� as a function of qa.
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mensionless size parameter qa. In the case of large particles when compared to
the wavelength, a linearly or circularly polarized wave becomes depolarized over
a distance that is significantly greater than the mean-free path. Both the experi-
mental data and simulations show that the ξ are nearly equal in the region qa ∼ 1,
as can be seen in the inset of Fig. 10, where we have plotted the variation of the
length ratio ξL/ξC with the size parameter qa. For the Rayleigh region, this ra-
tio can be computed exactly using Eq. (30) and is equal to

√
2. In the range

of sizes investigated, this ratio is a decreasing function of the parameter qa. As
can be seen, the numerical calculations are in good agreement with experimental
data.

The discussion would be incomplete without considering some additional re-
lated developments concerning entropy production

�S = S
(

qa,
d + �*

�*

)
– S

(
qa,

d
�*

)
.

The effect of optical thickness is illustrated in Fig. 11 for an incident circularly
polarized wave. Since identical behavior is observed for incident linearly polar-
ized waves, we concentrate on the circularly polarized case only. It is clear from
looking at this figure that the entropy production falls off exponentially with the
optical thickness for d/�* � 1. The dependence of the entropy production on qa,
hence on the degree of forwardness of the scattering is depicted in Fig. 12. This
figure shows a comparison between the size dependence of the entropy produc-

Figure 11 Optical-thickness dependence of entropy production �S = S[qa, (d +
�*)/�*] – S(qa, d/�*) plotted as ln(�S) vs. d/�* for a circularly polarized incident light
beam and fixed values of the size parameters qa. The values of qa from the top are 3.5, 5,
and 7.
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Figure 12 Entropy production as a function of size parameter qa for a circularly polar-
ized incident light beam and fixed values of the optical thickness d/�*. The values of d/�*

from the top are 10, 1, and 0.1.

tion for fixed values of d/�*. Notice that a minimum of entropy production at
qa ∼ 1, corresponding to a maximum of entropy, separates a domain of decreasing
entropy production for small particles from a domain of increasing entropy pro-
duction for large particles. As before, this behavior is interpreted as arising from
the anisotropic property of the scattering. Furthermore, if we compare the three
curves in Fig. 11, it is interesting to observe that �S is significantly smaller when
d/�* increases. We refer to references [5] and [21] for a discussion of the physical
reasons for why the depolarization process actually implies that the system should
tend to produce entropy according an exponential law.

The difference between the two types of behavior corresponding to qa � 1 and
qa > 1 stems from the anisotropic property of the scattering. In the Mie regime,
the scattering is predominantly in the forward direction, while in the Rayleigh re-
gion, forward and backward scattered directions are treated on an equal footing. It
is also appropriate to recall that the direction of linear polarization is not affected
by a single scattering of light from a particle in the backward direction, regardless
of particle size. It should be noted that the variations of ξL/� and �*/� as function
of qa are close to each other (cf. solid line in Fig. 10). This supports the idea that
the mechanism of depolarization for an incident linearly polarized state originates
from the randomization of the direction of the wave. On the other hand, backscat-
tering acts as an optical mirror (right ↔ left) for circularly polarized states, i.e.,
helicity flip. The helicity being preserved over large distances compared to �* for
large scattering particles explains why the characteristic length for incident circu-
larly polarized light is greater than the corresponding length for incident linearly
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polarized light. Two distinct mechanisms contribute to the depolarization of circu-
larly polarized light: the randomization of the direction and the randomization of
the helicity. However it is difficult to infer from the preceding arguments what the
contribution of these two mechanisms to the total length ξC will actually be.

Two comments may be in order here. Since in most experiments absorption
is weak, it has been neglected. However we would like to stress that the effect of
absorption may be an important issue in many cases. Moreover, it is now well es-
tablished that when scatterers of a finite size are considered, Mie resonance effects
(not considered here) should be taken into account. In the resonance region of
particle size parameters, the Rayleigh and geometric-optics approximations are in-
applicable and numerical methods for characterizing scattering must be based on
directly solving Maxwell’s equation.

3.2.3 New applications

Over the past decade polarization and coherence notions have continued to find
new applications in their traditional areas of use such as optical vortex generation
and singularities in paraxial vector fields. Recently, several groups [34–37] have
pursued a morphological approach of polarization patterns in the transverse plane
and showed that these patterns contain different types of singular points of po-
larization that are characterized by conserved topological numbers (singularities).
Singularities are directions in anisotropic media in which two or three waves have
coincident phase velocities [38,39]. Berry [34] showed that in complex vector
waves, there are two sorts of polarization singularity. On the one hand, the polar-
ization is purely circular on lines in space or points in the plane (C singularities).
On the other hand, the polarization is purely linear on lines in space for general
vector fields, and surfaces in space or lines in the plane for transverse fields (L sin-
gularities).

Another interesting example among the many uses of the polarization parame-
terization is the current research focused on the development of optical fiber trans-
mission systems. Since the invention of the Er-doped optical amplifier a decade
ago, commercial optical fiber communication systems have increased in transmis-
sion capacity by almost four orders of magnitude. This increase has been made
possible by the advent of wavelength division multiplexing (WDM), in which a
large number of wavelength channels are used simultaneously to transmit infor-
mation. Given the complexity and cost of modern-day optical communication sys-
tems, accurate design modeling of optical fiber transmission has become absolutely
necessary. One of the key problems to be modeled is the polarization mode dis-
persion. The combination of polarization-dependent loss, polarization-dependent
gain, and polarization mode dispersion can lead to fading in long-distance under-
sea systems. This effect can be counteracted by polarization-scrambling the signal,
but polarization-dependent loss can lead to repolarization.
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Physics and its techniques have played a significant role in biology for decades.
x-ray crystallography and nuclear magnetic resonance are essential tools for struc-
tural biologists. Medicine is also beginning to discover the benefits of polarized
light. This is not surprising since of the four basic forces in nature, only the elec-
tromagnetic interaction is effective on a scale comparable to that of biological or-
ganisms. One of the most promising applications lies in the field of biomedical
diagnosis of tissues. Optical materials found in biology provide numerous start-
ing places for biomimetic design or direct use of biomolecular materials. There is
considerable recent interest in using polarized characteristics as contrast parame-
ters to investigate turbid biological media. This originates from the fact that most
mammalian tissues are weakly absorbing in the 600–1300-nm wavelength range;
however, the scattering properties of tisues at these wavelengths are significant,
meaning that the near-IR light is subjected to extensive scattering. An excellent
review by Barbour et al. [40] provides a comprehensive view of the experimental
studies devoted to the use of polarized light in biomedical applications. The hope is
that polarized light will be useful to isolate ballistic photons from the diffuse back-
ground and thus enhance the spatial resolution in optical tomographic methods.
A number of experimental studies have appeared showing that relevant informa-
tion can be obtained from measurements of the spatially dependent response of
the medium to a polarized point source [41–43]. Scientists at the forefront of this
research have shown how polarized light is already being used to diagnose skin dis-
eases by the in vivo and in vitro characterizations of the biological tissues [44,45].
In a similar way, the polarization information encoded in the diffusely scattered
light is potentially useful for body glucose monitoring [46,47], and microstruc-
tural bioimaging [41,43]. Vitkin and coworkers [48] have clearly shown that the
dependence of the degree of polarization on pigmentation of tissues, and on optical
properties in general, must be fully accounted for if the polarization information is
to be used for quantitative analysis of biological tissues. Most recent experiments
merely add to the list of problems yet to be understood.

As already noted at the beginning of this chapter, polarization is an important
aspect of the visual world that is hidden to us. However, polarization is detected
by most insects and by many vertebrates other than mammals. Sweeney et al. [49]
have recently shown how polarized light is used by several species of butterflies,
which are physiologically sensitive to polarization for mate recognition, or detection
of any object in a terrestrial environment.

3.3 Additional Remarks and Future Directions

In this chapter, the focus has been on some basic aspects of polarization optics,
summarizing the optics community’s current understanding of polarization and
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the various formalisms that describe how polarized radiation interacts with mat-
ter. It is fascinating to try to write about this. We have known ever since Stokes
and Poincaré, that polarization is specific to the vector nature of the electromag-
netic field. But it is only through decades of trying to measure the correlations
between the fluctuating field variables that we have come up with a formulation
of polarized light in terms of statistical physics concepts. The usefulness of the
entropic formalism for studying an interaction of radiation with matter has been
noted before, but for the first time we have exploited the information contained
in the polarization of the radiation. Thus, unlike previous workers who have dealt
with a scalar description of light, our equations make use of the coherency (den-
sity) matrix formalism. A careful analysis of the key concepts shows that the low
dimensional unitary groups, SU(N) can be applied to a useful parametrization of
the density matrix. On the basis of this work, its use can be expected to charac-
terize nonimage-forming optical devices, scattering media, and anisotropic media.
These results depend on the assumption that the optical field is narrowband, but
the results are independent of the spectral distribution. Various formulas were then
quoted and physical arguments presented, to motivate the use of density matrix in
partial polarization theory. It should perhaps be emphasized once again that the
theoretical arguments presented in this paper are limited to second-order statistics
of the radiation field.

There do, of course, remain a number of points to be investigated regarding
the fundamental issue of the entropic description of non-Gaussian electromag-
netic fields, which require a higher than second order analysis. The solution of
the fourth-order moment problem is of particular importance since it contains in-
formation about the intensity fluctuations and their correlations. For the case of
non-Gaussian distributed radiation field, the fourth-order entropy is expected to
differ from the second-order entropy version. At a still more general level, we con-
clude that, although the treatment discussed in this paper was developed to cal-
culate the entropy of a stochastic wavefield in classical terms exclusively, there is
no corresponding quantum approach of the entropic properties of a radiation field
based on the use of Stokes operators. In classical statistical mechanics, dynamics
and thermodynamics are separable. In writing down simple nondynamical models
such as the Ising model, we typically take advantage of this simplicity. An inter-
esting problem that deserves further work is the extension of this analysis dealing
with the noncommutation of the Stokes operators [5,50].

Space limitations for this article preclude a fuller description of the possible ap-
plications for which polarization concepts may be useful. The physical evaluation
of polarization properties of light is an area of prolific work at present in both the
scientific and technical communities, with reasonably complete surveys of the lit-
erature probably being possible only through computer search methods. However,
the brief descriptions above are a good indication of the broad range of these pos-
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sibilities, and the reader is referred to the works mentioned above, and the works
cited in the references, for further information.

I end with several remarks about open questions. The list of future challenges,
both for theorists and experimentalists, is long. Perhaps it is appropriate to close
by enumerating some of them: (1) despite many years of intensive investigation,
we still do not fully understand the details of the propagation of a polarized wave
in multiple scattering media, e.g., to understand the physical origin of the non-
Gaussian distributed of the electric field when a small member of scatterers is
present in the scattering volume; (2) lots of people, myself included, expect that
physics will have increasingly important things to say about biological processes. In
particular, much work remains to be done to establish quantitative applications of
polarized light diagnostics in biomedicine, e.g., to quantify the concentration of op-
tically active (chiral) metabolites such as glucose in optically turbide tissues; (3) the
propagation of polarized light in randomly varying birefringent optical fibers, i.e.,
to determine how randomly varying dispersion affects the polarization state on the
Poincaré’s sphere is important for the development of optical networks; defining
new polarization descriptors for an arbitrary (non-plane) electromagnetic wave is
one of the major research directions in the contents of nonparallel light, optical
near fields, and nonoptics. Fortunately, as with any healthy science, the theory is
now being driven by a large amount of new measurements and observations. Far
from being an obscure phenomenon, polarization has great significance through-
out science and technology and there is every indication more excitement is yet to
come.

All of the applications mentioned in the previous paragraphs rely entirely on
what we have learned about the theoretical description of polarized light. This ex-
cursion into the domain of polarization optics brings to mind that the early great
contribution made by Emil Wolf came by way of statistical physics through the
concept of coherency matrix, i.e., correlations between the fluctuating field vari-
ables at two space-time points. This concept has initiated a flurry of further work
and suggests many further directions of research to keep practitioners of polar-
ization optics occupied well into the new century. Most scientists only dream of
contributing to a paradigm shift—Wolf personally initiated one. Most focus their
research efforts in one narrow area of specialization—Wolf ’s work ranged over the
breadth of optics. Most influence the training of only a small cohort of students—
Wolf ’s contributions to education reach hundreds of thousands, at all levels of
sophistication. Wolf ’s creations are a constant presence in today’s optics.* His

* It is worth observing that Wolf presented recently [51] a unifield theory of coherence and polar-
ization of random electromagnetic fields which brings out clearly the intimate relationship which
exists between these two phenomena and which makes it possible to predict the changes in the
state of polarization of a partially coherent electromagnetic beam on propagation.
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abstract, elegant style is now the standard language of statistical optics.† I hope
this account of Wolf ’s contribution to polarization optics will serve to remind the
present generation of optical physicists and engineers that Wolf is one of those on
whose shoulders they stand. Clearly, numerous challenges remain, but the rate of
advance in polarization science over the past decade promises that this area will de-
liver exciting developments in the early twenty-first century. It is a great time to be
involved in polarization research. We who follow Wolf must rededicate ourselves
to a strict adherence to his standards of excellence both in research and teaching.
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Emil Wolf’s Influence

For almost six decades, the work of Emil Wolf has gained considerable attention
and has become the basic reference for researchers and students in optics. As a
matter of fact, Emil Wolf is a living legend in the field of physical optics. I first
came across the work of Emil Wolf when I was an undergraduate student fasci-
nated by the mystery of polarization phenomena. In my undergraduate years, I
learned that light passing through a birefringent waveplate has a different phase
velocity depending on the direction of its electric field vector to special axes of
the crystal, i.e., the ordinary and extraordinary waves with orthogonal polarization
states. I found a comprehensive treatment of this effect in his 1959 magnum opus
Principles of Optics co-authored with Nobel laureate Max Born, which is among the
maybe five most famous books ever written on optics. As I write this, I am remem-
bering that it was my first exposure to the amazing facts of optics. A generation of
students have learned the basics of optics thanks in no small part to courses based
on Principles of Optics. It also taught to me some remarkable mathematics that I
could actually see for myself made sense. His prolific publications have influenced
all aspects of the discipline and are actively discussed in the academic literature,
e.g., correlation-induced shift now identified with the adjective “Wolf,” as well as
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in engineering fields, e.g., diffraction tomography. It is a daunting task of inte-
grating the many facets of the extraordinary career of Emil Wolf into a unified
whole. Wolf ’s growing influence on the statistical description of polarized light
was recognized as long ago as 1954, when he introduced a precise measure of the
correlations between the fluctuating field variables at two space-time points. The
idea of correlations represents a landmark in the history of polarization optics and
has been highly successful. Still, it was Wolf who gave us the alphabet from which
the field of coherence and polarization optics was written.
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CHAPTER 4

ELECTROMAGNETIC THEORY OF

OPTICAL COHERENCE

Ari T. Friberg

4.1 Introduction

Almost half a century has passed since the polarization of light beams and the
theory of optical coherence, in classical and quantized forms, were formulated in
a systematic manner. In a classic paper [1] published in 1955, Emil Wolf intro-
duced the two-point space-time correlation function, now known as the mutual
coherence function, and showed that in free space this function obeys two wave
equations (see Fig. 1). This demonstrated the fundamental phenomenon that not
only the field but also the spatial coherence propagates in the form of waves. In an-
other pioneering work [2], Wolf analyzed the state of polarization of a light beam
in terms of its “coherency matrix” and the now well-familiar Stokes parameters.
Using the properties of the 2 × 2 coherence matrix, the degree of polarization
could be introduced in an unambiguous manner. The formal theory of space-time
coherence of arbitrary stationary electromagnetic fields was put forward in twin
papers in 1960 by Roman and Wolf [3,4]. In these works the four general 3 × 3
correlation tensors (electric, magnetic, and mixed coherence matrices) were intro-
duced and their properties were analyzed. This research, which took place before
or around the time the first lasers were produced, has become the cornerstone of
most of the subsequent studies on polarization and electromagnetic coherence. The
quantum theory of coherence was formulated soon afterwards [5].

Entirely new physical insights were subsequently gained through the formula-
tion of optical coherence phenomena in the space-frequency domain, in terms of
the cross-spectral density tensors (matrices) [6]. This is natural in many circum-
stances since, for example, the material response (e.g., refractive index) in optics
is frequency dependent. A novel but rather subtle quantity, the spectral degree of
coherence, which is a measure of the spatial coherence of a statistically stationary
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Figure 1 Two wave equations for mutual coherence function �, in Wolf ’s own
hand-writing. (From the cover of special issue on physical optics and coherence theory
in honor of Prof. Emil Wolf ’s 75th birthday, J. Eur. Opt. Soc. A: Pure Appl. Opt. 7, Sep-
tember 1998.)

field at a given frequency, was introduced [7]. The space-frequency theory of op-
tical coherence was extensively employed by Wolf already in the 1970s in studies
of radiative energy transfer [8] and generalized radiometry [9]. Many of these
subjects are reviewed in the comprehensive textbook by Mandel and Wolf [10].

The electromagnetic description of light, with its inherent polarization and vec-
torial coherence properties, has quite recently attracted increased attention in many
areas of modern optical science and engineering such as diffractive and microop-
tics, near-field physics and spectroscopy, and nanophotonics. The electromagnetic
correlations of light are altered on propagation and scattering, resulting in corre-
sponding changes in the spectrum [11], the (spatial and temporal) coherence, and
the polarization state. In general, all these effects are described by a unified theory
of coherence and polarization of random electromagnetic fields, which lately has
become a topic of intensive research.

4.2 Fundamental Scalar Results

To begin, briefly recall from the scalar theory of optical coherence, some key con-
cepts and results that have a direct bearing on the subsequent electromagnetic
analysis. In coherence theory the fluctuating field is represented by a complex an-
alytic signal U(r, t), where r denotes position and t time. The real and imaginary
parts of U(r, t) form a Hilbert transform pair [10]. Assuming the field is station-
ary in time and ergodic, the mutual coherence function is defined as

�(r1, r2,τ) = 〈U*(r1, t)U(r2, t + τ)〉, (1)

where the asterisk denotes a complex conjugate and the angular brackets indi-
cate time or ensemble averaging. In the space-frequency representation, the central
quantity is the cross-spectral density function, which is obtained from Eq. (1) via
the (generalized) Wiener-Khintchine theorem [10]

W(r1, r2,ω) =
1

2π

∫ ∞

–∞
�(r1, r2,τ)exp(iωτ) dτ. (2)
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The cross-spectral density W(r1, r2,ω), which is zero for ω < 0, is applicable
irrespective of the spectral bandwidth of the radiation.

Correlation functions are subject to stringent mathematical conditions. The
cross-spectral density W(r1, r2,ω) is Hermitian and nonnegative definite [10].
In usual circumstances it is square-integrable with respect to r1 and r2 in the do-
main of observation D. Hence, W(r1, r2,ω) may be regarded as a Hermitian,
nonnegative-definite Hilbert-Schmidt kernel, and by Mercer’s theorem it admits
a uniformly and absolutely convergent expansion [12]

W(r1, r2,ω) =
∑

n

λn(ω)φ*
n(r1,ω)φn(r2,ω), (3)

where λn(ω) are the eigenvalues and φn(r,ω) the eigenfunctions of the Fredholm
integral equation

∫
D

W(r1, r2,ω)φn(r1,ω) d3r1 = λn(ω)φn(r2,ω); (4)

the domain D may also be other than three-dimensional (3D). The eigenvalues
λn(ω) are real and nonnegative, and the eigenfunctions φn(r,ω) are orthonormal
(or can be chosen so in a degenerate case) within D.

The expansion in Eq. (3) is known as the coherent-mode decomposition [10]
of the cross-spectral density function W(r1, r2,ω). It represents W(r1, r2,ω) as
an incoherent superposition of elementary modes that are spatially fully coherent
at frequency ω. The spectral degree of (spatial) coherence, bounded in magnitude
between 0 and 1, is defined as [7]

µ(r1, r2,ω) =
W(r1, r2,ω)

[S(r1,ω)S(r2,ω)]1/2
, (5)

where

S(r,ω) = W(r, r,ω) (6)

is the spectrum (or spectral density) of the field. The complete spatial coherence
of the modes follows directly from the fact that each term in Eq. (3) factors in the
two spatial variables. A distinction must be made between the traditional complex
degree of coherence [10] γ(r1, r2,τ), which is a normalized form of Eq. (1), and
the spectral degree of coherence, Eq. (5); they are usually quite different [13]. It
is remarkable, and perhaps even somewhat counterintuitive, that a stationary field
analyzed at a given frequency ω is, as a rule, spatially partially coherent.
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By making use of the coherent-mode representation, Wolf also demonstrated
that the cross-spectral density may be expressed as a correlation over an ensemble
of monochromatic functions, i.e.,

W(r1, r2,ω) = 〈Ũ*(r1,ω)Ũ(r2,ω)〉, (7)

where the brackets now stand for an ensemble average [12]. The functions
Ũ(r,ω) are not the Fourier transforms of field realizations U(r, t) [10]. This is
a fundamental result that justifies the analysis of stationary random scalar wave-
fields frequency by frequency. The electromagnetic analog of the coherent-mode
decomposition will be addressed in the subsequent sections.

4.3 Electric Cross-Spectral Density Matrix

For arbitrary fluctuating electromagnetic fields, the correlation properties are fully
characterized by the four coupled coherence tensors [10]. As is common in optics,
only the electric field E(r, t) will be considered. In full analogy with Eqs. (1) and
(2), the elements of the electric space-time coherence matrix and cross-spectral
density matrix are [3,10]

Ejk(r1, r2,τ) =
〈
E*

j (r1, t)Ek(r2, t + τ)
〉

(8)

and

Wjk(r1, r2,ω) =
1

2π

∫ ∞

–∞
Ejk(r1, r2,τ)exp(iωτ) dτ, (9)

where (j, k) = (x, y, z) denote the Cartesian coordinates. In the space-frequency
representation the central object, in matrix form, then is explicitly:

W(r1, r2,ω) =



Wxx(r1, r2,ω) Wxy(r1, r2,ω) Wxz(r1, r2,ω)
Wyx(r1, r2,ω) Wyy(r1, r2,ω) Wyz(r1, r2,ω)
Wzx(r1, r2,ω) Wzy(r1, r2,ω) Wzz(r1, r2,ω)


 . (10)

The electric cross-spectral density matrix in Eq. (10) contains all the information
about the electric-field correlations. It is well defined and applicable irrespective of
whether the E-field has one component (plane polarized), two components (trans-
versely polarized), or three components, as in optical near fields. Within the parax-
ial approximation, a related 2×2 quantity is sometimes called the beam coherence-
polarization (BCP) matrix [14].
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The correlation matrix W(r1, r2,ω) is a mathematically subtle quantity. It is
not a Hermitian matrix as written in Eq. (10), but it is Hermitian if the points r1
and r2 are also interchanged, i.e.,

W†(r2, r1,ω) = W(r1, r2,ω), (11)

where the superscript † means Hermitian conjugate. Thus the “diagonal element”
W(r, r,ω) is a 3 × 3 Hermitian matrix. Furthermore, the diagonal elements of
Eq. (10), such as Wxx(r1, r2,ω), are nonnegative definite scalar quantities, since
they are autocorrelation functions, while the off-diagonal elements, for example
Wxy(r1, r2,ω), are not subject to the nonnegative definiteness requirement, since
they are cross-correlation functions. In general, it can be shown that W(r1, r2,ω)
satisfies the matrix-form nonnegative definiteness condition [15]∫ ∫

D
g†(r1) · W(r1, r2,ω) · g(r2) d3r1d3r2 ≥ 0, (12)

where g(r) is an arbitrary (well-behaved) vector-valued function. Additionally, the
cross-spectral density W(r1, r2,ω), and its magnetic and mixed counterparts, sat-
isfy a number of propagation laws and similar relations [3,4,10], because the elec-
tromagnetic field obeys Maxwell’s equations.

In decreasing complexity, the cross-spectral density matrix W(r1, r2,ω) in
Eq. (10) provides the following information about the field:

General W(r1, r2,ω) ⇒ Electromagnetic coherence

Diagonal element W(r, r,ω) ⇒ Polarization state

tr W(r, r,ω) ⇒ Spectrum

Here tr denotes the trace of the matrix. Next, these topics are discussed separately,
starting from the simplest one.

4.4 Spectral Changes

Inspired by the coherence-induced spectral changes [11], the spatial coher-
ence properties and spectra of electromagnetic fields emanated from semi-infinite
sources in thermal equilibrium have recently been examined [16,17]. The half-
space boundary introduces a surface that breaks the overall symmetry and may
introduce various types of surface excitations. The current-density correlations
within the source are given by the fluctuation-dissipation theorem of statisti-
cal physics and the ensuing electric-field coherence properties, as described by
Eq. (10), are then found with the help of the appropriate Green dyadic.
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Several new and unexpected results have been obtained. The half-space source
supports surface waves (polaritons), which are confined electromagnetic modes
near the boundary. Surface plasmons are collective electron-density waves that cor-
respond to poles in p-polarized wave transmission, while surface phonons are lattice
vibrations in polar material. For example, silicon carbide (SiC) supports a surface
phonon at wavelength λ = 11.36 µm. As a result, the spectrum

S(r,ω) = tr W(r, r,ω) (13)

exhibits marked changes on propagation. The spectra of thermal emission from a
room-temperature sample of SiC at different heights above the surface are shown
in Fig. 2. The mean wavelength of radiation is about λ ≈ 10 µm. In the near field
[Fig. 2(c)] the spectrum is almost monochromatic, while in the far field [Fig. 2(a)]
it has evolved into a broadband distribution containing a distinctive nonradiation
region where the near-field peak was located. The peak corresponds to surface
phonons, whose effect disappears at distances comparable to a wavelength.

The main observation is that the spectrum of light in the near field is quite
different from what one might expect on the basis of spectroscopic far-field mea-
surements. These results may have implications in surface physics and near-field

Figure 2 Spectra of thermal emission of a semi-infinite SiC sample at T = 300 K at
heights: (a) za = 1000 µm, (b) zb = 2 µm, and (c) zc = 0.1 µm. The insets show the
spectra on a semilog scale in the range of strong contribution from evanescent surface
modes. (Adapted from Shchegrov et al. [17].)
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optics, such as particle manipulation by tweezers and spanners, where the field in
which the object is immersed obviously is of particular importance.

4.5 Degree of Polarization

The traditional polarization analysis applies to fields that have planar wavefronts,
such as uniform optical beams or wide-angle far fields. The electric field vector is
transverse to the direction of propagation, and the 2D coherence (or polarization)
matrix J2 contains all necessary information. As Wolf [2] has shown, the coher-
ence matrix can be decomposed in the 2 × 2 unit matrix and the three Pauli spin
matrices [generators of SU(2) group]. The expansion coefficients are the Stokes
parameters, which all have clear physical meanings (Poincaré sphere). In particu-
lar, the degree of polarization P2 of the beam can, equivalently, be expressed using
the coherence matrix J2 or the four Stokes parameters [10].

In general cases, such as near fields or tightly focused beams, the electric field
contains all three components (Ex, Ey, Ez). The coherence matrix describing the
partial polarization of the field, at point r and frequency ω, then is

J3(r,ω) =
[
Jjk(r,ω)

]
=

[Wjk(r, r,ω)
]

, (14)

where the diagonal elements Jjj(r,ω) (j = x, y, z) are the “intensities” of the com-
ponents while the off-diagonal elements Jjk(r,ω) (j �= k) characterize their corre-
lations. One may introduce a coefficient

µjk(r,ω) =
Jjk(r,ω)

[Jjj(r,ω) Jkk(r,ω)]1/2
, (15)

with absolute value between 0 and 1. Since J3 is a Hermitian and nonnegative
definite matrix, its eigenvalues are real and nonnegative. Using the mathematical
properties of J3, as in the 2D case, a degree of polarization P3 may be introduced
that is applicable for any random electromagnetic fields [18,19]. The matrix J3
does not, however, admit a resolution as a sum of two matrices that correspond
to fully polarized and unpolarized 3D fields. As I show later, P3 is related to a
quantity that was proposed as a general measure of the second-order spectral elec-
tromagnetic correlations.

The coherence matrix J3(r,ω) is expanded in terms of proper basis matrices,
chosen to be the Gell-Mann matrices, as [18]

J3(r,ω) =
1
3

8∑
j=0

�j(r,ω)λj. (16)
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Unit matrix λ0 and the eight Gell-Mann matrices λj (j = 1, . . . , 8), generators
of SU(3) symmetry group, are Hermitian, trace-orthogonal, and linearly indepen-
dent 3×3 matrices. The nine expansion coefficients �j (j = 0, . . . , 8) can be shown
to have well-defined physical interpretations similar to those of the four Stokes pa-
rameters in the beam formalism, and therefore these coefficients are regarded as
generalized Stokes parameters [18].

In analogy with P2 for beams, the degree of polarization P3 of an arbitrary
random 3D electromagnetic field is defined by the formula (r and ω suppressed)

P2
3 =

3
2

[
tr (J2

3)
tr2(J3)

–
1
3

]
=

1
3

∑8
j=1 �2

j

�2
0

. (17)

Evidently P3 is invariant in unitary transformations, so it does not depend on the
orientation of the coordinate system. It can further be shown that the degree of
polarization is bounded such that 0 ≤ P3 ≤ 1, the limits representing the extremes
of unpolarized and fully polarized fields.

Additional physical insight is gained by expressing P3 explicitly in terms of the
correlation coefficients |µjk| of the electric-field components as [18]

P2
3 ≥ |µxy|2JxxJyy + |µxz|2JxxJzz + |µyz|2JyyJzz

JxxJyy + JxxJzz + JyyJzz
. (18)

This result shows that P2
3 is always greater than or equal to the averaged squared

correlations of the electric-field components weighted by the corresponding inten-
sities. The left-hand side of Eq. (18) does not depend on the coordinate orienta-
tions, but the right-hand side does. The equality holds for a system in which the
diagonal elements (electric-field component intensities) are the same. In such a sit-
uation P2

3 reduces to an average of the squared correlations. These conclusions are
in agreement with the analogous 2D results. Hence, the degree of polarization P3
is a measure of the correlations that, at any point in space, exist among the three
orthogonal E-field components.

In is important to stress that the 3D formalism, in general, gives for the degree
of polarization different values than the conventional beam method. For example,
while a fully unpolarized plane wave in the 2D analysis has a zero degree of po-
larization (P2 = 0), in the 3D treatment its degree of polarization P3 must be
nonzero since the electric field is confined to a transverse plane (Ez = 0). In fact,
for plane waves P3 is restricted to values 0.5 ≤ P3 ≤ 1. Intuitively the differences
can be understood by considering Fig. 3. In the upper row, an unpolarized planar
wave (Jxx = Jyy, no correlations) traverses a polarizer. The usual beam formal-
ism gives P2 = 0 and P2 = 1 for the wave before and after the polarizer, respec-
tively. In the lower row, an unpolarized 3D electromagnetic field (Jxx = Jyy = Jzz,
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Figure 3 Illustration of the differences between the traditional 2D (top row) and the
general 3D (bottom row) coherence-matrix formalisms in the treatment of the degree of
polarization of an electromagnetic wavefield.

no correlations between any components) is passed through two devices that cut
off the electric-field components in orthogonal directions. For the initial field,
which cannot be described using the beam method, the 3D formalism gives zero
for P3. On passing through the first device the field becomes partially polarized
(Jxx = 0, Jyy = Jzz, no correlations between y and z components) and consequently
P3 = 0.5. After the second device, the field is fully polarized (P3 = 1), since the
oscillations now take place only in a single direction.

4.5.1 Degree of polarization in near fields

The general 3D formalism of partial polarization has been applied to the electro-
magnetic near fields emitted by semi-infinite thermal half-space sources [19]. The
methods for obtaining the cross-spectral density matrix W(r1, r2,ω) in Eq. (10),
as well as the polarization-degree calculations and the results, are explained in more
detail elsewhere [16,20].

In Fig. 4 the behavior of the degree of polarization P3, introduced in Eq. (17)
for an arbitrary point r and frequency ω, is illustrated as a function of distance
z from the boundary of a source consisting of gold (Au) and SiC (both at two
wavelengths), and glass. Always P3(0) = 0.25, but the far-field value depends
on source material. At λ = 620 nm gold exhibits a surface-plasmon resonance,
and since plasmon waves are strongly polarized, the near field attains a high peak
value for P3(z). Similar behavior is noted in the near field of SiC source at λ =
11.36 µm, corresponding to a surface phonon. However, tuning the wavelength off
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Figure 4 Degree of polarization P3(z) in the optical near fields, at certain wavelengths,
emitted by thermal half-space sources consisting of glass, gold (Au), and silicon carbide
(SiC). At large distances, P3(z) does not tend to zero.

resonance, the near-field degree of polarization is greatly reduced, as is evidenced
by the curves for gold at λ = 400 nm and SiC at λ = 9.1 µm. Further, it is seen
that P3(z) for a thermal glass sample decays monotonically as the distance z from
the source increases. Glass does not support surface waves, and the decay is directly
related to the loss of the evanescent modes.

4.6 Coherence of Electromagnetic Fields

Conventional wisdom in optical coherence theory says that spatial correlations in
electromagnetic fields necessarily extend, at least, over distances on the order of the
wavelength [9,21]. This assertion has recently been tested by rigorous electromag-
netic calculations pertaining to fields emitted by thermal half-space sources [22].
Some key results are presented in Fig. 5. If the source consists of slightly lossy
glass, the field correlations, such as the component Wxx(r1, r2,ω), very close to
the boundary indeed behave as sin(kρ)/kρ, where k = ω/c = 2π/λ is the wave-
number and ρ = |r1 – r2|, characteristic of blackbody radiation [10]. However,
if the medium is tungsten (W), which shows strong adsorption at λ = 500 nm,
spatial correlations close to the source’s surface are very short, only on the order
of 0.06λ, corresponding to about the skin depth of tungsten. On propagation to
larger distances, the field coherence assumes the blackbody form. The extremely
narrow, quite unusual, spatial correlations in the immediate vicinity of a tungsten
source are explained by absorption, and thereby by decorrelation of the field, over
a skin-depth distance within the medium [22].

The coherence behaves quite differently at wavelengths that correspond to
surface-polariton resonances. For example, at λ = 620 nm, both silver (Ag) and
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Figure 5 Normalized transverse spatial coherence at a fixed height z0 above a
semi-infinite thermal half-space source. Top part: lossy glass and tungsten (at two z0), at
λ = 500 nm. Bottom part: tungsten, gold, and silver at λ = 620 nm, at height z0 = 0.05λ.
(Adapted from Carminati and Greffet [22].)

gold (Au) support surface plasmons, while tungsten does not. The surface waves
are manifested in field correlations, e.g., component Wxx(r1, r2,ω), that persist
in an oscillatory manner over tens of wavelengths (bottom part of Fig. 5). The
surface phonon of SiC at λ = 11.36 µm leads to similar long-range correlation
features [22]. These results illustrate that surface polaritons, which are associated
with highly polarized waves decaying exponentially above the surface, are able to
transport electromagnetic coherence near the boundary over large distances. Grat-
ing couplers etched on the source can convert surface-polariton fields into usual
propagating waves [23]. This leads to a directional emission of almost coherent
radiation at certain wavelengths from thermal sources.

4.6.1 Young’s interference experiment

Since early analyses [24] employing the usual space-time representation of electro-
magnetic coherence, Young’s interference experiment with vector fields has quite
recently attracted renewed interest, in the space-frequency domain [25]. The clas-
sic arrangement is schematically illustrated in Fig. 6. A fluctuating electric field
with two components (Ex, Ey) impinges on two pinholes, located at P1(r1) and
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Figure 6 Illustration of the geometry and notation related to Young’s interference
arrangement. Source S gives rise to a random electromagnetic field that is incident on
the two-pinhole setup.

P2(r2) in plane A, and the interference fringes are observed some distance away
on screen B. The spectrum at point P(r), as defined by Eq. (13), is given by the
spectral interference law [7,10,25]

S(r,ω) = 2S(1)(r,ω)
[
1 + |ξ(r1, r2,ω)|cosα(r1, r2,ω) + δ

]
, (19)

where S(1)(r,ω) is the spectrum of light reaching P(r) through a single opening
(spectra from both holes are assumed equal). Moreover [24,25],

ξ(r1, r2,ω) =
tr W(r1, r2,ω)

[S(r1,ω)S(r2,ω)]1/2
, (20)

where W(r1, r2,ω) is the 2 × 2 cross-spectral density matrix, α(r1, r2,ω) is the
phase (argument) of ξ(r1, r2,ω), and δ = (R2 – R1)/c. Hence, the visibility of the
fringes is directly obtained as V(r,ω) = |ξ(r1, r2,ω)|, while α(r1, r2,ω) deter-
mines the fringe location.

If the electric field across the pinholes in plane A has only one component (or
if the polarization state is uniform), the situation corresponds to usual scalar-wave
optics (a 1D case) and Eq. (20) reduces to Eq. (5) for the spectral degree of co-
herence µ(r1, r2,ω). Hence by analogy to scalar coherence theory, and follow-
ing Zernike’s classic work [26], the quantity ξ(r1, r2,ω) in Eq. (20) has been
called [24,25] the spectral degree of coherence of the electric field at points P1(r1)
and P2(r2). Clearly the interference term in Eq. (19) disappears if ξ(r1, r2,ω) = 0
and fringes of maximum contrast are produced when |ξ(r1, r2,ω)| = 1.

The trace-quantity in Eq. (20), which only involves the diagonal elements of
W(r1, r2,ω), has been used as a characteristic measure of spectral coherence in
random electromagnetic fields [21,27], and some of its consequences have been
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analyzed [28,29]. Electromagnetic fringe formation depends not only on the co-
herence of the electric fields at the pinholes but also on their states of polarization,
since orthogonal components do not interfere. Hence, for example, a wave plate
that rotates the incident-wave polarization across one of the openings will alter the
visibility, consequently changing ξ(r1, r2,ω). Further, Eq. (20) is not invariant in
transformation to curvilinear coordinates frequently used in far fields.

4.6.2 Degree of electromagnetic correlations

To arrive at a more stringent quantity free from these drawbacks, one must also in-
clude the off-diagonal elements of W(r1, r2,ω). To this end, let me first consider
intensity interferometry for beams of Gaussian statistics (Hanbury-Brown–Twiss
experiment in space-frequency domain). The fourth-order field correlations of the
incident radiation are observed. For a Gaussian scalar wave U(r,ω), the ensemble
average of intensity fluctuation �S(r,ω) = U*(r,ω)U(r,ω) – S(r,ω), at points
P1(r1) and P2(r2), is given by [10]

〈�S(r1,ω)�S(r2,ω)〉 = S(r1,ω)S(r2,ω)|µ(r1, r2,ω)|2, (21)

where µ(r1, r2,ω) and S(r,ω) are the coherence degree and spectrum defined
by Eqs. (5) and (6), and the Gaussian moment theorem was used. This shows
that intensity interferometry yields the degree of coherence, and the fringe visi-
bility, for Gaussian scalar waves. What if the field is treated electromagnetically?
For Gaussian vector beams (a 2D case) E(r,ω) = [Ex(r,ω), Ey(r,ω)], the two-
point average of intensity fluctuation �S(r,ω) = E*(r,ω) · E(r,ω) – S(r,ω)
takes on the form [10]

〈�S(r1,ω)�S(r2,ω)〉 =
∑

jk

|Wjk(r1, r2,ω)|2, (22)

where [Wjk(r1, r2,ω)] is a 2 × 2 analog of Eq. (10) and S(r,ω) now is given by
Eq. (13). The normalized correlation of intensity fluctuations for Gaussian vector
beams then becomes

|µG(r1, r2,ω)|2 =

∑
jk |Wjk(r1, r2,ω)|2∑

j Wjj(r1, r1,ω)
∑

k Wkk(r2, r2,ω)
, (23)

which, in view of Eq. (21), may be identified as the square of the degree of spa-
tial coherence. While the derivation of Eq. (23) is specific to Gaussian beams, one
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may relax this condition and define the spectral degree of correlations (or coher-
ence [29]) for an arbitrary electromagnetic field as

ζ2(r1, r2,ω) =
tr[W(r1, r2,ω)W†(r1, r2,ω)]
tr W(r1, r1,ω) tr W(r2, r2,ω)

, (24)

where Eq. (11) was used. A more compact form for Eq. (24) is

ζ2(r1, r2,ω) =
‖W(r1, r2,ω)‖2

F

S(r1,ω) S(r2,ω)
, (25)

with ‖ · ‖F denoting the Frobenius (or Euclidean) norm of a matrix.
This expression for the spectral degree of correlations is equally valid for 1D

(scalar), 2D (beams), and 3D electromagnetic fields. The quantity ζ(r1, r2,ω) in
Eq. (25) is always real and is normalized such that [29]

0 ≤ ζ(r1, r2,ω) ≤ 1. (26)

With scalar waves, ζ(r1, r2,ω) reduces to the absolute value of the usual spectral
degree of coherence |µ(r1, r2,ω)|. For beam fields, the elements of W(r1, r2,ω),
and therefore ζ(r1, r2,ω), are measurable by use of polarizers [29], but in the
general case, such as for electromagnetic near fields, more elaborate techniques
must be employed.

One of the most important consequences [30] of Eq. (25) is that the cross-
spectral density W(r1, r2,ω) factors in its two spatial variables if, and only if,
ζ(r1, r2,ω) = 1. Such a factorization property is a fundamental characteristic of
a completely coherent field [5,10]. Analogous results pertaining to fully coherent
electromagnetic fields in the space-time domain have also been examined [31].

4.6.3 Coherence and polarization

Equation (14) shows that the equal-point (r1 = r2) electromagnetic coherence is
closely related to the degree of polarization. From the general definition of Eq. (24)
ζ(r1, r2,ω) it follows, after some algebra, that the degrees of self-correlations are:

1D: ζ(r, r,ω) = 1 (scalar),

2D: ζ(r, r,ω) =
[(

P2
2(r,ω) + 1

)
/2
]1/2

(EM beam),

3D: ζ(r, r,ω) =
[(

2P2
3(r,ω) + 1

)
/3
]1/2

(EM field),

where P3 is given by Eq. (17) and P2 is the 2D degree of polarization [2,10].
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It is of interest to note that the equal-point degree of correlations equals unity
if, and only if, the field is completely polarized (for scalar waves this is always the
case naturally). An electromagnetic field cannot be fully correlated (coherent) at
a point if its orthogonal components are only partially correlated, manifested in
partial polarization. Likewise, for multicomponent fields ζ(r, r,ω) never actually
reaches zero; it has a lower bound, 1/

√
2 for 2D beams and 1/

√
3 in the general

case. The origin of the nonzero lowest attainable value is that even for unpolarized
fields each Cartesian component at any point (fully) correlates with itself. These
results indicate that electromagnetic coherence is fundamentally different from the
familiar scalar-wave coherence.

4.6.4 Coherent-mode representation

Wolf ’s coherent-mode decomposition of scalar fields, given by Eq. (3), has led to
a number of important applications in radiation and propagation, scattering, and
inverse problems. Extensions of this key result to partially coherent and partially
polarized paraxial [32] and full vector fields [15] were introduced very recently. In
view of Eqs. (11) and (12), the electric cross-spectral density matrix W(r1, r2,ω)
may be regarded as a Hermitian, nonnegative definite Hilbert-Schmidt kernel, and
so it can be expanded as [15]

W(r1, r2,ω) =
∑

n

λn(ω)φ†
n(r1,ω)φn(r2,ω), (27)

where λn(ω) and φn(r,ω) are the eigenvalues and eigenfunctions, respectively,
of the Fredholm integral equation

∫
D

φn(r1,ω) · W(r1, r2,ω) d3r1 = λn(ω)φn(r2,ω). (28)

The eigenvalues are real and nonnegative. Since the eigenfunctions are subject to
a vectorial orthonormality condition in D, they represent orthogonal polarization
states within the decomposition domain.

I emphasize that the coherent-mode decomposition in Eq. (27) gives the cross-
spectral density matrix W(r1, r2,ω) as an incoherent sum of elementary matri-
ces that all factor in the two spatial variables. Hence, these vector-field modes are
completely coherent [15] in the space-frequency domain, in terms of the degree of
electromagnetic correlations given by Eq. (25).

As in scalar theory, many useful results follow from Eq. (27). For one thing,
one may construct an ensemble of monochromatic vectors and show that the cross-
spectral density W(r1, r2,ω) can rigorously be expressed as a correlation matrix
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averaged over this ensemble [15] in analogy to Eq. (7). Straightforward calcula-
tions based on Eq. (27) lead to an effective degree of spectral correlations [15,33]∫∫

DD S(r1,ω)S(r2,ω)ζ2(r1, r2,ω) d3r1 d3r2∫∫
DD S(r1,ω)S(r2,ω) d3r1 d3r2

=

∑
n λ2

n(ω)[∑
n λn(ω)

]2 ≥ 1
N

, (29)

where N is the number of modes. The average electromagnetic correlations can
be zero in D only if N approaches infinity. On the other hand, the expression in
Eq. (29) is equal to unity only if N = 1. The relation between the eigenvalues and
the degree of correlations remains unchanged if scalar fields are considered. Thus,
the spectral theory of electromagnetic coherence and the quantity ζ(r1, r2,ω) in
Eq. (25) are fully consistent with their classical scalar counterparts.

4.7 Conclusions

It is hoped that this overview manages to convey some impressions of the rapid
pace at which the electromagnetic coherence theory and its applications are cur-
rently progressing, despite long and well-established traditions. The theory of op-
tical coherence with vector fields is, perhaps surprisingly, far from being finalized,
as is evidenced by the ongoing endeavors to address partial polarization, electro-
magnetic coherence, and also entropy (which was not considered here) in near-field
optics and nanophotonics.

The overriding conclusions to draw are that while electromagnetic coherence
theory in many ways is similar to the conventional scalar theory of coherence, at
the same time it is fundamentally different from scalar coherence in many aspects.
The similarities are in the overall mathematical structure. The differences primarily
arise from the fact that, unlike scalar waves, electromagnetic fields contain several
components and their correlations must be included in a comprehensive treatment
of polarization and coherence. Recent definitions of the degree of polarization and
the degree of correlations (coherence) for arbitrary random 3D electromagnetic
fields were assessed, but many questions still remain unanswered.

One thing is clear, though. The preceding sections and citations demonstrate
that Wolf ’s work has laid the foundations and he continues to influence much of
today’s research in the field of electromagnetic theory of optical coherence. It has
been a privilege to work with him all these years.
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CHAPTER 5

PHYSICAL OPTICS AT PHYSICAL

OPTICS CORPORATION

Tomasz P. Jannson

5.1 Introduction

My venture with physical optics started during my graduate studies at Warsaw
Tech in Poland when my supervisor, the late Prof. Bohdan Karczewski, proposed to
me as a subject of my M.S. thesis, “electromagnetic analysis of polarization states of
waves diffracted on a perfectly conducting half-plane [1],” based on Emil Wolf ’s
coherency matrix formalism [2,3]. (This so-called Sommerfeld problem [4], as
well as the coherency matrix formulation of polarization states, are discussed else-
where in the present work [5,6].) From his Rochester discussion with Emil Wolf,
Prof. Karczewski also suggested to me as a subject of my Ph.D. dissertation “in-
verse diffraction coherence theory [7],” a subject closely connected with inverse
properties and the information content of evanescent waves [8], later seen as one
of the earlier attempts at nano-optics, also discussed in this book [9]. At that time
in Poland considerable study was stimulated by Prof. Rubinowicz and his school
into diffraction of electromagnetic and acoustic waves, including the equivalence
problem of integrating the Young and Huygens approaches, first solved for spher-
ical incidence wave by Rubinowicz [10,11], and then generalized by Miyamoto
and Wolf [12].

Working as an Adjunct Professor at Warsaw Tech, I had directed my interest
to the engineering aspects of physical optics, mostly in holography, holographic
interferometry, and Fourier optics. Here again, critical to my studies were Emil
Wolf ’s inverse diffraction problem developments [13] based on the first Born ap-
proximation [14], which was instrumental in volume (Bragg) holography and dif-
fraction tomography, the latter developed by A.J. Devaney, also described in this
book [15]. My further efforts in Poland concentrated on structural information in
volume holography [16,17], planar holograms [18], and integrated optics [19].
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Those efforts materialized later in the U.S. in such applications as chip-to-chip
waveguide interconnects [20,21].

My real venture with physical optics, however, started when I met Joanna. We
soon married, and have worked together ever since. It was a fantastic coopera-
tion from the beginning, and I would wish for anybody to work in such a “coher-
ent” way, when “1+1>2.” While working together in Poland at Warsaw Tech, we
had developed a new approach to Fourier optics [22,23], based on the temporal
Fourier transform [22,23]. She then started her Ph.D. dissertation under Prof.
Jan Petykiewicz, in which she developed the basic theoretical framework for prism
coupling into an anisotropic waveguide [24], based on complex-variable Rieman
spaces, as an extension of those in the Sommerfeld problem [25]. She completed
her Ph.D. a year later at the University of New Mexico, in Albuquerque.

Just before leaving Poland, I spent three months in Olomunc, Czech Republic
(then Czechoslovakia), where Prof. Jan Perina [26] advised me to study Carter’s
and Wolf ’s paper on physical radiometry [27]. This paper turned out to be critical
for engineering applications of physical optics, because, by introducing the concept
of quasi-homogeneous sources, it opens up the theoretical framework of physical
optics into a broad range of partially coherent light sources such as thermal, fluo-
rescent LEDs and LDs. This paper stimulated my own studies in this new area
of physical optics [28,29], later critical in our development of diffuser products
at Physical Optics Corporation (POC). Today at POC and the company’s sub-
sidiaries [30] only about half of our efforts are directly related to physical op-
tics. Other areas include electronic imaging [31] and soft computing [32,33];
small RF communication platforms [34,35] such as unmanned ground vehicles
(UGVs) and unmanned aerial vehicles (UAVs); fiber sensors [30], fiber commu-
nication [30], microwave phased array antennas based on physical optics [30],
remote lighting, and others [36,37]. Nonetheless, physical optics still plays a cru-
cial role in our product efforts, and these physical optics-based commercial efforts
at POC will be the main subject of this paper.

5.2 Non-Lambertian Diffusers Theory

While many semitransparent scattering media, either natural or artificial (such as
milky glass), can be considered diffusers most of them are Lambertian scatterers.
The main issue then is how to control and/or modify their angular spectrum in a
useful way for specific practical lighting applications such as backlighting, cellular
phones displays, diffuser screens for rear projection and front projection TV; opti-
cal sensors and illuminators producing wide angle uniform white light; flat panel
displays; and other lighting systems. For projection screens in particular, it would
be useful to develop diffusers with broader horizontal angular divergence usually
characterized by a so-called half-width and half-maximum angle (HWHM) and
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a narrow vertical divergence. It is not easy to produce such non-Lambertian “el-
liptical” diffusers by any conventional means, such as mechanically or lithograph-
ically, since scattering microscopic centers should be random/aperiodic (to avoid
rainbow/grating effects on white light) and have an anisotropic profile. Speckle
optics gives us a general tool for this purpose: producing a non-Lambertian dif-
fuser by recording anisotropic laser speckle in a random pattern is one solution to
this problem; reducing this solution to practice is itself a problem.

In our early studies of speckle optics diffusers, we used volume holographic
materials such as dichromate gelatin (DCG) as a recording medium [38], building
on our volume holography expertise [39,40]. Later we began using photoresist, a
surface-relief material, as a recording medium [41] in which high relief aspect
ratios (ARs) (see Fig. 1) and volume (Bragg) effects can still be observed in at
least two ways: the zero-order beam can be reduced to a minimum, and diffraction
efficiencies of master copies can be higher than those of the master itself, a strange
manifestation of Kogelnik’s volume holographic resonance effect [42].

A theoretical explanation of “holographic” diffusers (or rather “speckle” dif-
fusers) should include the fact that controlled-shape speckles are recorded with
laser light and then reconstructed by an incident beam of either white or laser
light. White light is important for applications such as rear-projection TV and lap-
top/wireless handset display backlighting, yet white light optics has been rather
unpopular in the scientific world since the invention of the laser.

To record a holographic diffuser, a coherent laser beam is incident on a plane
original diffuser mask, as in Fig. 2. In the reconstruction process, in the linear
approximation, the amplitude transmittance of the diffuser mask is

t = BI, (1)

where B is a proportionality constant and I is the intensity modulation. According
to the spatial representation of the Wiener-Khintchine theorem [3], the angular
spectrum intensity of diffused (scattered) quasi-homogeneous light is proportional

Figure 1 Illustration of diffuser relief aspect ratio (AR).
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to the 2D Fourier transform of the spatial coherence autocorrelation density func-
tion of amplitude transmittance (assuming a monochromatic collimated normal in-
cident beam). Therefore, according to Eq. (1), we need, to find the autocorrelation
intensity function in the form

W(r) = C〈I(r′ + r)I(r′)〉, (2)

where 〈· · ·〉 is the ensemble average, and r = (x, y).
This problem was solved by Goldfischer [43], whose final formula [38] is

〈I(r + r′)I(r′)〉 = D|F(r)|2, (3)

F(r) = F(x, y) =
∫ ∫

du dvP(u, v)exp[–2πi(xu + yv)]/λh, (4)

where D is a constant, and P(u, v) is the aperture function of the original diffuser
mask. (Other setups for diffusers are described in Ref. [41].)

Unfortunately, Goldfischer’s derivation of Eq. (3) is rather complicated, since
in his derivation in Ref. [43] he applied discrete cosine and sine functions rather
than complex-variable continuous functions based on the concept of the analytic
signal [3]. Therefore, we repeat this important derivation in the complete complex-
variable analytic signal notation, with some variables defined in Fig. 2.

Consider a coherent collimated incident laser beam. The complex amplitude of
the diffracted light on the (u, v) screen has the form (within the accuracy of the

Figure 2 Configuration for recording non-Lambertian diffuser mask (screen).
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x, y-dependent quadratic term)

A(x, y) =
∫ ∫

[P(u, v)]1/2expiϕexp
[ ik(u2 + v2)

2h
exp

–ik(xu + yv)
h

]
du dv, (5)

where k = 2π/λ, h is the distance between the (u, v) and (x, y) planes, ϕ is the
original diffuser’s random phase, and P(u, v) is the intensity aperture function,
equal to 1 inside the diffuser aperture, and 0 otherwise. The intensity function is

I(x, y) =
∫ ∫ ∫ ∫

[P(u, v)]1/2[P(u′, v′)]1/2exp[iϕ(u, v)]exp[–iϕ′(u′, v′)]

×exp
[–ik

h
(xu + yv)

]
exp

[ ik
h

(xu′ + yv′)
]

du dv du′ dv′, (6)

where quadratic factors have been included in the random phases ϕ and ϕ′. Now
we apply simplifying relations; this is equivalent to a general statement that Fresnel
and Fraunhofer diffraction regions are equivalent in the context of speckle statis-
tics; also, we have

exp
[–i2πx

λh
(u – u′)

]
= exp[–i2πxp], (7a)

u – u′ = pλh, or u′ = u – pλh (7b)

to obtain (for x-dependent terms):

exp
[–ik

h
(xu) +

ik
h

(xu′)
]

= exp
[–ikx

h
(u – u′)

]
= exp

[–i2πx
λh

(u – u′)
]

= exp(–i2πpx), (8)

and the intensity function formula becomes:

I(x, y) =
∫ ∫ ∫ ∫

[P(u, v)]1/2[P(u – pλh, v – qλh)]1/2exp[i	(u, v; p, q)]

× exp[i2π(px + qy)] du dv dp dq, (9)

where 	 = ϕ – ϕ′. Therefore, the intensity autocorrelation function is
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〈I(x, y)I(x + �x, y + �y)〉
=

∫ ∫ ∫ ∫ ∫ ∫ ∫ ∫
[P(u, v)]1/2[P(u′, v′)]1/2[P(u – pλh, v – qλh)]1/2

× [P(u′ – p′λh, v′ – q′λh)]1/2exp[i	(u, v; p, q)]exp[–i	 ′(u′, v′; p′, q′)]
× exp[–i2πx(p – p′)]exp[–i2πy(q – q′)]exp[i2πp′

�x]exp[i2πq′
�y]

× du dv dp dq du′ dv′ dp′ dq′. (10)

Since function (	 – 	 ′) is random, the nonzero contribution is only from those
terms that include nonrandom items; i.e.,

	 – 	 ′ = 0 , (11)

which is equivalent to p = p′, q = q′, u = u′, and v = v′. Thus, Eq. (10) reduces
to the following relation:

〈I(x, y)I(x + �x, y + �y)〉 =
∫ ∫ ∫ ∫

P(u, v)P(u – pλh, v – qλh)

× exp(i2πp�x)exp(i2πq�y) du dv dp dq, (12)

which is equivalent to Eq. (17) in Ref. [43]. However, we have

∫ ∫
P*(pλh – u, qλh – v)exp(i2πp�x)exp(i2πq�y)dpdq

= P̂*
(�x

λh
,�y
λh

)
exp

(
– i2π�x

u
λh

)
exp

(
– i2π�y

v
λh

)
, (13)

where P̂ is the 2D Fourier transform of the P-function; also,

∫ ∫
P(u, v)exp

(
– i2π�x

u
λh

)
exp

(
– i2π�y

v
λh

)
du dv = P̂

(�x
λh

,
�y
λh

)
. (14)

Substituting Eqs. (13) and (14) into Eq. (12), we obtain

〈I(x, y)I(x + �x, y + �y)〉 =
∣∣∣∣P̂(�x

λh
,�y
λh

)∣∣∣∣
2

, (15)

which, with accuracy to proportionality constant, is identical with Ref. [43],
Eq. (18), and our Eq. (3). In order to obtain Eq. (3), however, we need to change
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notation:

(x, y) → (x′, y′) → (r′), (16a)

(�x, �y) → (x, y) → (r), (16b)

P̂ → F, (16c)

then Eq. (15) becomes 〈
I(r + r′)I(r′)

〉
= D|F(r)|2, (17)

where

F(r) = F(x, y) =
∫ ∫

du dvP(u, v)exp[–i2π(xu + yv)/λh], (18)

which is identical to Eq. (4), confirming Goldfisher’s derivation [43].
If the incident source is spherical instead of collimated, this modifies the factor

exp[–i2π(xp + yq)] into exp[–i2π(p′uo + px)], (19)

where

px + p′uo = p
[

x + uo
h
h′
]

.

Figure 3 explains the existence of this new factor, since

u′

h
=

uo

h′ ⇒ u′ = uo
h
h′ , (20)

which coincides with Eq. (19).
Therefore, modifying the incident beam from collimated to spherical is equiv-

alent to the lateral translation of a diffraction pattern. In addition, if the incident
beam is Gaussian, we have an additional attenuation factor that is equivalent to the

Figure 3 Illustration of Eq. (20).
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following pupil function:

P(u, v) = exp
[–(u2 + v2)

w2

]
. (21)

5.2.1 Angular spectrum of light scattered by non-Lambertian

diffuser

In the reconstruction process, we illuminate the diffuser mask (x, y) with a col-
limated white-light beam; thus, for a monochromatic component of the light at a
reconstruction wavelength that typically is different from the wavelength recording
λo �= λ, the radiant intensity [27] is

J(s) = szA
∫ ∫

dx dyexp[–ikor · s]W(r), (22)

where ko = 2π/λo, W(r) = 〈t(r′ + r)t*(r′)〉, and, from Eqs. (1) and (2), we have

W(r) = G〈I(r′ + r)I(r′)〉, (23)

where r = (x, y), and G is a constant; s = (sx, sy) is the (x, y) projection of direc-
tional unit vector:

s2x + s2y + s2z = 1. (24)

By substituting Eq. (17) into Eq. (23) and Eq. (23) into Eq. (22), we obtain

J(sx, sy) = sz · D
∫ ∫

du dvP(u, v)P
(

u +
λ

λo
hsx, v +

λ

λo
hsy

)
, (25)

i.e., the autocorrelation of the aperture function P, which is the original diffuser
pupil function; h is the distance between the original diffuser (used for recording
the non-Lambertian diffuser), and the recorded diffuser. Thus, Eq. (25) contains
information about both the recording and reconstruction processes, while “speckle
statistics” is defined by Eq. (4), which is the Fourier transform of the pupil function
P in the following form:

F(fx, fy) =
∫∫

du dvP(u, v)exp[–i2π(fx · u + fy · v)], (26)

fx =
x
λh

, fy =
y
λh

. (27)

In order to obtain statistically averaged speckle sizes, consider a typical case of a
rectangular aperture, as illustrated in Fig. 2. Then, P(u, v) is the rectus function
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P(u, v) = rect
( u

L

)
rect

( v
W

)
,

where

rect(x) =
{

1 for |x| ≤ 1/2
0 for |x| > 1/2

. (28)

Then, according to Eq. (26), the F-function is

F(x, y) = sinc(fx · L) sinc(fy · W),

where

sinc(ξ) =
sinπξ

πξ
. (29)

The first zeros of this function are defined by the relations

fx0 · L = 1, fy0 · W = 1. (30)

Substituting Eq. (27) into Eq. (30), we obtain

x = x0 =
λh
L

, y0 =
λh
W

. (31)

Defining the average speckle sizes as (2x0, 2y0), we obtain

δx = 2x0 =
2λh
L

, δy = 2y0 =
2λh
W

. (32)

This relation is illustrated in Fig. 4.

Figure 4 Illustration of Eq. (32) describing statistically averaged speckle sizes.
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Figure 5 Illustration of 1D triangular function [Eq. (33)].

For example, for λ = λo = 0.5 µm, h = 10 cm, and L = 1 cm we obtain
δx = 10 µm.

Substituting Eq. (28) into Eq. (25), we obtain

J(sx, sy) = szD�

(
sx
sx0

)
�

(
sy
sy0

)
, (33)

where � is the triangular function shown in Fig. 5 with an amplitude of 1 and
zero-intersections at points –sx0 and sx0 , or –sy0 and sy0 , where

sx0 =
L
h

λo

λ
, sy0 =

W
h

λo

λ
. (34)

We see that when the reconstruction wavelength λo, is longer than the record-
ing wavelength λ, the angular sizes of the beam scattered by a non-Lambertian
diffuser are larger by a factor of λo/λ. For, λo = λ, we have

sx0 =
L
h

, sy0 =
W
h

. (35)

On the other hand, the angular sizes of the pupil (aperture) “seen” from the non-
Lambertian diffuser center, according to Fig. 2, are

sx′
0

=
L
2h

, sy′0 =
W
h

, (36)

i.e., twice-smaller than beam angular sizes described by Eq. (35). This angular
relation is shown in Fig. 6.

Substituting Eq. (36) into Eq. (32), we obtain

s′x0
δx = λ, s′y0

δy = λ, (37)

or using Eq. (35) we have

sx0δx = 2λ, sy0δy = 2λ. (38)

Those “uncertainty relations” combine angular sizes with speckle sizes. They are
illustrated in Table 1.
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Figure 6 Illustration of the fact that the prime symbols, angular sizes with speckle sizes
(sx0 , sy0) of scattered beam, are twice as large as the angular sizes of the original diffuser
(sx′

0
, sy′0) “seen” from the non-Lambertian diffuser center.

Table 1 Speckle sizes (δx) versus angular size of the pupil (sx0 ) and scattered beam (sx0 ),
for λ = λo = 0.5 µm.

s′x0
0.05 0.1 0.15 0.2 0.25

sx0 0.1* 0.2 0.3 0.4 0.5
δx

** 10 µm 5 µm 3.3 µm 2.5 µm 2 µm

*Equivalent to ±5◦-angular divergence.
**Statistically averaged size.

The formula Eq. (22) can be generalized for slanted angles of incidence; then,
instead of Eq. (22), we have (assuming a slowly varying sz-parameter):

J(s, s1) = sz · AIo(s1)
∫ ∫

dx dye–iko(s–s1)r · W(r), (39)

where s1 is the directional vector of the incident beam illuminating the non-
Lambertian-diffuser. For an angular spectrum of incident beams we have:

J(s) =
∫ ∫

h(s – s1)Io(s1) dsx1 dsy1, (40)

where

h(s – s1) = sz

∫ ∫
dx dyexp[–iko(s – s1) · r]W(r) (41)

is the impulse response of the system. Equation (40) is a generalization of Eq. (22),
and describes broadening of the angular spectrum scattered by the diffuser as a
result of nonplane illumination. The angular spectrum of incident illumination is
described by Io(s1).
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In a similar way, we can generalize the monochromatic case to the nonmono-
chromatic case:

J(s) → J(s1,λo) (42)

to obtain the following formula:

J(s) =
∫ ∫ ∫

h(s – s1,λo)Io(s1,λo) dsx1 dsy1 dλo, (43)

where Io(s1,λo) describes both the angular and the wavelength spectra of the inci-
dent beam. The angular broadening of the scattered beam as a result of wavelength
broadening can, according to Ref. [38], be described by the following formula:

�λo

λo
=

�sx
sx

, (44)

where sx = sinαx; thus, we have

�sx
sx

=
�αx

tanαx
, (45)

and for tanαx ≈ 1, we roughly have

�λo

λo

∼= �αx. (46)

For example, for λo = 0.5 µm and �λ = 20 nm, �αx = 2 deg. However, it
should be emphasized that, because of the diffuser random structure, the angu-
lar broadening that is due to nonmonochromatic incident wave does not create a
rainbow effect similar to that of grating diffraction.

It is well-known that in the case of a fully-coherent incident screen, when the
diffuser is moving (e.g., rotating), the radius of spatial coherence is equal to the
rms of the speckle (average speckle size), and since, according to Eq. (33), we can
control the speckle sizes, we can also control the spatial coherence of the scattered
beam [38].

5.2.2 New degree of freedom for communication as a result of

spatial coherence

According to Ref. [38], we can transmit information through spatial coherence
modulation only by changing pupil size over time, and thus proportionally, increas-
ing or reducing the intensity of incident light. Angular spectrum and wavelength
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spectrum are unaffected, as is intensity. Therefore, a standard intensity detector
spectrometer or some detector arrays will not detect any light modulation. Yet, in-
formation will be still sent by means of the spatial coherence modulation, which can
be detected only by a Young interference detector. This effect can be compounded
with Wolf ’s wavelength shift effect, also discussed in this book.

5.3 Non-Lambertian Diffusers Experiment

5.3.1 Applicability of the theoretical formulas

For practical purposes it is important to determine precisely the assumptions under
which the theoretical formulas given in the previous chapter have been derived. It
should be emphasized that similar formulas can be obtained by other means than
those shown in Fig. 2 {see, e.g., Fig. 23 in Ref. [44]}. However, the methods pro-
posed here are very practical ones because they do not require lenses. Also, note
that the proposed non-Lambertian diffuser production process consists of two-
steps: (1) registration of a coherent laser speckle pattern with wavelength λ, as de-
scribed by the Goldfischer formula Eq. (3); and (2) illumination of a recorded non-
Lambertian diffuser with a partially coherent (LED, thermal) nonmonochromatic
(including white) incident light beam, with average wavelength λo as described
by Eq. (25). Here, emphasis is on the application aspect of the introductory pho-
tometric formula Eq. (22), which can be considered a particular case of Schell’s
theorem {see, e.g., Eqs. (5.7–10) in Ref. [44]}. Equation (22) coincides with the
Schell formula if we assume that the spatial coherence radius dc is much larger
than the autocorrelation radius da of the complex pupil function, identified here
with the non-Lambertian diffuser transmittance function t, as in Eq. (22) {do not
confuse the pupil function defined by Goodman [44] with our aperture function
from Eq. (9)}; i.e., we obtain

da � dc. (47)

This is because, in the vast majority of practical cases, a given non-Lambertian
diffuser is illuminated either with collimated laser light or with LED light. In both
cases Eq. (47) is satisfied. In the second case, by applying the Van Cittert-Zernike
theorem for LED with size a = 50 µm, distance z = 2 cm, and λo = 0.63 µm,
the coherence radius is

dc =
λo · z

a
=

0.63 µm × 2 cm
50 µm

= 252 µm, (48)

while da does not typically exceed 10 µm. We see that Eq. (22) can be treated
as an advanced version of the Brian Thompson formula for the coherent case {see
Eqs. (5.7–13) in Ref. [44]} if we replace the typical open diffraction aperture with



128 Physical Optics at Physical Optics Corporation

Figure 7 Typical diffuser illumination schemes described by Eq. (22) for various dif-
fuser FWHM angular values.

Figure 8 Homogenization by two types of non-Lambertian diffusers: circular (second
row) and elliptical (third row), for various types of nonhomogeneous sources (first row).

our diffuser aperture. The typical application of Eq. (22) is shown in Fig. 7. The
typical homogenization process as an effect of a non-Lambertian diffuser is shown
in Fig. 8.

Figure 9 shows two scanning electron microscope (SEM) pictures of light
shaping diffuser (LSD*) structures, for the circular and elliptical diffusers.

* Light shaping diffuser is a trademark of Physical Optics Corp.
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Figure 9 SEM pictures of non-Lambertian diffuser structures: circular and elliptical;
18-deg LSD and 1500× magnification, as well as 0.2 deg × 11 deg LSD and 75×
magnification.

5.3.2 Mass production process

Non-Lambertian diffusers can be mass-produced by a replication of a single dif-
fuser master many times. Master fabrication proceeds through: master coating,
master holographic exposure, and submaster fabrication. The replication steps are:
hot embossing, injection molding, and web-machine-based UV curing. The mas-
ter fabrication and replication processes are shown in Fig. 10.

Figure 10 Mastering and replication processes at POC, including (from left to right):
diffuser roll web replication; diffuser roll inspection; hot embossing; injection molding;
hand replication; and diffuser master holographic recording.

5.4 Physical Radiometry at POC

5.4.1 Radiometric ray tracing (R2T)

Developed by Wolf [27,45–47] and others [28,29,48–53], physical radiometry
(photometry) extends the rules of geometric optics as weak diffraction phenomena.
Such diffraction optics phenomena are within the scope of optical radiation created
by quasi-homogenous sources, first defined by Carter and Wolf [27]. Based on
physical photometry, spatial coherence, and Fourier optics [54], radiometric ray
tracing (R2T) [28,29,55] expands the standard ray-tracing algorithms (such as
in ZEMAX) by adding information about the optical intensity and spatial co-
herence distribution of quasi-homogeneous sources. It should be emphasized that
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this R2T formalism is not based on the complex wave amplitude characteristic of
typical diffraction formulas (see, e.g., Refs. [3] and [54]), but rather on stan-
dard photometric quantities such as: radiance, or brightness (luminance); radiant
intensity; emissivity; and optical flux; therefore, it should not be confused with dif-
fraction optics algorithms, also included in recent versions of ZEMAX and other
ray-tracing algorithms. Its ultimate goal would be quantitative ray-tracing system
design based on optical properties of all system components one by one without the
need for an overall system physical experiment. In other words, by applying R2T, we
could predict weak diffraction optical system performance without making an actual optical
experiment. The optical components to be analyzed within R2T could include all
lenses, mirrors, and other imaging elements as well as any scatterers and diffusers,
assuming that we know their optical characteristics. The R2T does not, however,
cover diffractive optical elements, gratings, multi-layers, and other components
that produce strong diffraction phenomena manifested by interference/rainbow ef-
fects.

The practical importance of the R2T is significant: by finding an optical mea-
sure of all system components, treated separately, and by extension of the system
R2T based on the known component optical parameters, we obtain all overall ra-
diometric (photometry) parameters of the system, without its actual measure. That
saves significant optical design time for many optical systems of interest, espe-
cially nonimaging optical (NIO) systems [56], including ones that have scattering
elements such as diffusers. Therefore, R2T is especially useful for designing illu-
mination and display systems based on the non-Lambertian diffusers developed at
POC.

The fundamental connection between photometric quantities and 4D phase
space is based on the fact that radiance (brightness, luminance) is a 4D phase-
space density [55]. Thus, an arbitrary bundle of rays passing through a given plane
(x, y) can be presented as a multiplicity of points in phase space (i.e., a single ray
is represented homomorphically by a single point in phase space). In particular, a
Lambertian source radiation is represented by a uniform 4D (radiance) distribution
in phase space [55].

The fundamental relation between radiance and phase-space density, or 4D
ray density, can be applied to evaluate photometric quantities by numerically cal-
culating the number of rays passing through selected phase-space domains. For
example, radiance can be calculated as the number of rays located in the phase-
space elementary cell defined by Heisenberg’s uncertainty relation and adapted to
optics. Emissivity, on the other hand, can be calculated by integrating elementary
cells through directional vector space (sx, sy). As a result, the formalism presented
enables us to connect standard ray-tracing methods such as ZEMAX, for a mul-
tiplicity of rays, with basic radiometric quantities and relevant spatial coherence.
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5.4.2 Physical radiometry, R2T, and geometric optics

It was shown by Wolf and others [28,29,50,57,58] that in the short-wavelength ap-
proximation the physical radiometry preparation rules collapse to geometric-optics
ray-tracing rules. In this sense R2T is automatically applicable to related geometric
optics problems.

There is yet another area of physical optics that can benefit from R2T, namely,
the area in which phenomena related to physical optics are manifested in a soft
way (see Sect. 5.4.1). In these cases, the susceptibility to optical interference (and
diffraction) is weak; in other words, the spatial coherence of an optical source is low
and optical intensity spatial distribution varies slowly. Such weak-spatial-coherence
sources are said to be quasi-homogeneous. They are very common in nature and
in industry, and include all thermal sources, fluorescent sources, LEDs, the vast
majority of semiconductor lasers, plasma sources, and others.

The criterion for defining a source as quasi-homogeneous is as follows. Con-
sider coherence radius, dc, defined as the radius of the area as in Sect. 5.3.1,
where the spatial coherence degree µ of the source is significantly larger than zero
(0 ≤ µ| ≤ 1) [27]. The source is called quasi-homogeneous when: (1) its spatial
coherence properties are homogeneous; and (2) within its coherence radius, the
optical intensity is almost constant. It could be observed that these properties are
easily satisfied for all the types of sources mentioned above. It should also be ob-
served that the minimum value of coherence radius is not zero but a wavelength;
in other words, there is no completely incoherent source assuming that inhomo-
geneous waves are ignored (the exception is the nano-optics domain, when the
inhomogeneous (evanescent) waves cannot be ignored [9]).

Physical radiometry also exhibits a connection between Lambert’s law and spa-
tial coherence, as shown in Table 2 [55]. In particular, we see that non-Lambertian
sources have narrower angular distribution than Lambertian ones, and conse-
quently, their coherence radius is larger than wavelength [28]. On the other hand,
no angular distribution broader than a Lambertian one can exist (see Table 2),
assuming that inhomogeneous (evanescent) waves are ignored. These conclusions

Table 2 Relation between angular characteristics and spatial coherence.

Type of source B∗ J† µ̃‡

Lambertian 1§ cosθ∗∗ cos–1θ

General cosnθ cosnθ
 cos(n+1)θ cos(n–1)θ

∗ Radiance; † Radiant intensity; ‡ Fourier transform of complex degree of spatial coherence; § for
Lambertian source, the radiance angular distribution is constant; then, accordingly to the physical
optics, the FWHM-angle is equal 120◦; ∗∗ Lambert law; 
 general cosnθ angular distribution;
for n = 0, the source is Lambertian; in general, n ≥ 0; see, legend (5).
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have important meaning for the R2T since phase-space (x, y; sx, sy) density of rays
is identical to radiance 4D distribution.

5.4.3 Radiometric anomalies

Physical radiometry [27–29,45–53] integrates classical radiometry with physical
optics in general and with spatial coherence in particular as in Ref. [27], where
radiance is shown to be proportional to the Fourier transform of the complex de-
gree of (spatial) coherence. This is demonstrated by applying to physical radiome-
try three physical optics features: (1) wave-complex-amplitude definitions of radi-
ance [48,49]; (2) the physical optics definition of quasi-homogeneous sources;
and (3) the physical optics formula for generalized radiance free-space propa-
gation. Unfortunately, there is unavoidable arbitrariness in choosing these fea-
tures; therefore, only an experiment could decide which is correct. One of the
necessary tests for the validity of this formalism is to prove that, in the “short-
wavelength” approximation, the radiance propagation formula becomes the clas-
sical radiometric formula. This was shown in two ways in [28,29,57–59], based
on: (1) Walther’s first or second definition of radiance [49]; (2) the definition of
quasi-homogeneous sources; and (3) the Rayleigh-Sommerfeld diffraction formula
of the first kind [60]. In Refs. [28,29], however, it was shown that the “short-
wavelength” approximation (called the “first-order” approximation in Ref. [29])
only holds for short z-distances, thus; the second-order approximation is needed
in order for the results to cover the full range of interest. The second-order ap-
proximation leads, however, to strange behavior of radiance during propagation,
referred to here as radiometric anomaly.

Specifically, the basic formula of Ref. [29] departs significantly from the con-
ventional radiometry propagation law, which states that projecting radiance in a
straight line through free space preserves its constant values. In contrast, accord-
ing to Ref. [28], Eq. (42), the values of radiance projected along a straight line are
not constant. Instead, they depend on the specific spatial distribution of radiance
in the source plane. In particular, if the spatial distribution is periodic, and we de-
compose that distribution onto 2D Fourier series characterized by specific spatial
frequency vector f, each radiance Fourier component will be projected with a dis-
tinct modulation factor M {see Eq. (45) in Ref. [28]}. It is shown in Refs. [28
and 29] that sometimes this M factor can even be zero:

M = 0. (49)

In this case, there are directions in which no modulated radiation is projected, even for
nonzero modulated radiance distribution at the source plane. This new hypothetical phe-
nomenon is called a radiometric anomaly.
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In other words, for a sinusoidal distribution of radiance with a specific spatial
frequency vector f, and for a specific direction of observation defined by angle θ,
the sinusoidal modulation is completely erased! Such a radiometric anomaly, still
to be verified experimentally, occurs for a specific distance z, wavelength λ, spatial
frequency f , observation angle θ, and specific angle α, between spatial frequency
vector f and projection vector p , the latter the (x, y) projection of the observation
unit vector s (see Fig. 2 in Ref. [28]). For example, for λ = 1 µm, f = 10 l/mm,
θ = 30 deg, and α = 60 deg, such an anomaly occurs for z = 4 mm, while for
f = 5 λ/mm and f = 2 λ/mm, with the other parameters remaining the same, the
corresponding distances are 16 mm and 10 cm, respectively. Also, for λ = 1 µm,
θ = 15 deg, α = 0, and f = 5 λ/mm, we obtain z = 18 mm. All three geometric
parameters values are quite common, so the radiometric anomaly should occur
often, assuming the second Walther definition of radiance [49] is correct.

5.5 Optics and Imaging at POC

In addition to statistical (diffuser) optics and physical radiometry, other areas of
physical optics include: holographic 3D autostereoscopic display [61]; Littrow-
grating-based coarse (nondense) wavelength division multiplexing (WDM) [62];
planar optics, including planar optical interconnects [21]; and chip-to-chip chan-
nel waveguide interconnects [21]. Among the many types of optics and imaging
at POC are: single-mode GaAs channel waveguide pigtailing [21]; WKB an-
alytic modeling of nonuniform holograms [36]; stratified volume diffraction ele-
ments [36]; optical computer motherboards [36]; millimeter wave antennas based
on physical optics principles [63]; spatial coherence filtering [64]; and nonlinear
grating filters for laser eye-protection [65,66]. Recently, electronic imaging tech-
nologies have been in development at POC [67–72].

The most mature of POC’s technologies is the non-Lambertian diffuser pro-
tected by over 35 U.S. patents and its production line is ISO-9001:2000-certified.
Also very mature at POC are electronic imaging technologies for robotics, un-
manned vehicles, cellular communication, and many defense and homeland secu-
rity areas. POC’s 3D autostereoscopic (without glasses) imaging [61] is an expan-
sion of Dennis Gabor’s 3D cinema concept [73]. The integrated optics fabrication
methods are derived from analogous non-Lambertian diffuser fabrication at POC,
including hot embossing. Finally, POC’s capabilities in the areas of small system
integration (SSI) and the theory of catastrophes [74,75] have been applied to nav-
igation without the Global Positioning System (GPS).

5.6 Conclusions

This chapter has presented a capsule of Physical Optics Corporation, including
ISO:9001-2000-certified diffuser manufacturing process and small system inte-
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gration capabilities. The technical review started with spatial coherence [64] and
physical optics, represented by non-Lambertian diffusers, radiometric ray tracing
(R2T), 3D displays, and others, and ended with a brief description of some ex-
otic subjects as radiometric anomalies and optical applications of the mathematical
theory of catastrophes.
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CHAPTER 6

MICROSCOPIC ORIGIN OF SPATIAL

COHERENCE AND WOLF SHIFTS

Girish S. Agarwal

6.1 Introduction

Emil Wolf [1–4] discovered how the spatial coherence characteristics of the source
affect the spectrum of the radiation in the far zone. In particular, the spatial coher-
ence of the source can result either in red or blue shifts in the measured spectrum.
His predictions have been verified in a large number of different classes of sys-
tems. Wolf and coworkers usually assume a given form of source correlations and
study its consequence. In this paper we consider the microscopic origin of spatial
coherence and radiation from a system of atoms [5–8]. We discuss how the radi-
ation is different from that produced from an independent system of atoms. We
show that the process of radiation itself is responsible for the creation of spatial
correlations within the source. We present different features of the spectrum and
other statistical properties of the radiation, which show strong dependence on the
spatial correlations. We show the existence of a new type of two-photon resonance
that arises as a result of such spatial correlations. We further show how the spatial
coherence of the field can be used in the context of radiation generated by nonlin-
ear optical processes. We conclude by demonstrating the universality of Wolf shifts
and its application in the context of pulse propagation in a dispersive medium.

We start by giving a summary of Wolf ’s main results [1,2]. Consider the radi-
ation produced by two point sources P1 and P2 at the observation point P (Fig. 1).
Let us consider for simplicity the case of scalar fields U(P,ω). The spectrum of
the field at P is given by

SU(P,ω) =
〈
U*(P,ω)U(P,ω)

〉
, (1)

141
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Figure 1 Radiation produced by two point sources P1 and P2 at the observation point P.

whereas the spectrum of the source is defined by

SQ(ω) =
〈
Q*(P1,ω)Q(P1,ω)

〉
(2)

=
〈
Q*(P2,ω)Q(P2,ω)

〉
. (3)

We assume identical spectra for the two sources. Let µQ(ω) be the spectral degree
of coherence between two sources

µQ =
〈Q*(P1,ω)Q(P2,ω)〉

SQ(ω)
. (4)

This is a measure of correlation between the two sources. For two coherent sources
µ is 1, whereas for incoherent sources µ = 0. The field U at the point P can be
related to the strength of the sources via

U(P,ω) = Q(P1,ω)
eikR1

R1
+ Q(P2,ω)

eikR2

R2
. (5)

Here we have ignored unnecessary numerical factors. Using Eq. (5), the spec-
trum of the field is related to the spectrum of the source and the degree of spatial
coherence:

SU(P,ω) = SQ(ω)
{

1

R2
1

+
1

R2
2

+
1

R1R2

[
µQ(ω)eik(R2–R1) + c.c

]}
. (6)

Clearly, in general, the source spectrum and the spectrum at P are not equal:

SU(P,ω) �= SQ(ω). (7)

So, the measured spectral characteristics will also be determined by µQ and
SU(P,ω), in general, would exhibit correlation-induced spectral shifts. Wolf used



Girish S. Agarwal 143

phenomenological models for SQ and µQ to demonstrate a variety of spectral shifts
and even the correlation-induced splitting of a line into several lines. Clearly, it is
desirable to understand the origin of source correlations.

6.2 Microscopic Origin of Source Correlations

We thus examine the question of how the atoms radiate. Consider for example
an atom in its excited state (Fig. 2). It interacts with the modes of a quantized
electromagnetic field in vacuum state. The atom makes a transition to the ground
state by the emission of a photon. The photon can be emitted in any mode of the
field. The atom has an infinite number of available modes. It is known that the
spectrum of the emitted radiation has Lorentzian spectrum

SA(ω) =
γ/π

(ω – ω0)2 + γ2 , (8)

where ω0 is the frequency of the atomic transition and γ is half the Einstein A
coefficient.

Next consider two atoms located at �rA and �rB, and let each atom be initially in
its excited state (Fig. 3). The question is whether the atoms radiate independently
of each other, i.e., whether the spectrum of the emitted photons factorizes

S(ω1,ω2) = SA(ω1)SB(ω2) (9)

or not. The correlations between the two atoms [6–8] would invalidate Eq. (9)
and would also imply that

SA(ω1) �=
∫

S(ω1,ω2)dω2, (10)

Figure 2 Radiation from a single atom.

Figure 3 Two photon emission by two atoms.
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i.e., the spectrum of the emitted radiation would be different from one if the other
atom was absent. Note that both atoms interact with a common quantized elec-
tromagnetic field. This interaction with a common field results in an effective in-
teraction between two atoms even if the atoms do not interact. This can also be
understood by considering, for example, the net field on the atom B(A), which
would consist of the vacuum field and field radiated by the atom A(B). Let us de-
note χij(�rA,�rB,ω) as the ith component of the field at position �rA due to a unit
dipole oriented in the direction j at the position �rB (Fig. 4).

Figure 4 Meaning of the response function x.

This field [9–11] is well known from the solution of Maxwell equations

χij(�rA,�rB,ω) =
(ω2

c2 δij +
∂2

∂rA∂rB

)exp(i|�rA – �rB|ω/c)
|�rA – �rB| . (11)

This function has a close connection with the spatial coherence of the vacuum of
the electromagnetic field. Let us write the electric field operator in terms of its
positive and negative frequency parts:

E = E(+) + E(–). (12)

It is well known in quantum optics that E(+)(E(–)) corresponds to the absorption
(emission) of photons. Further, E(+) is an analytical signal. Let us consider the
second-order coherence function of the electromagnetic field

SA
αβ(�r1,�r2,τ) =

〈
E(+)

α (�r1, t + τ)E(–)
β (�r2)

〉
, (13)

which is nonvanishing even though the field is in vacuum state. Its Fourier trans-
form is given by [9]

∫
dτeiωτSA

αβ(�r1,�r2,τ) = 2h̄Imχij(�r1,�r2,ω) if ω > 0

= 0 if ω < 0. (14)
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We thus conclude that the vacuum of the electromagnetic field has spatial coher-
ence that extends over the dimensions of wavelength. Therefore the correlation
between atoms would extend over distances of the order of wavelength. Clearly in
a macroscopic sample these correlations could build up over much larger distances.
Explicit results for two atoms can be found in Refs. [6–8].

6.3 Source Correlation-Induced Two-Photon Resonance

We next discuss several other situations where atom-atom correlations play an im-
portant role. Consider first the case of two unidentical atoms with transition fre-
quencies ωA and ωB and located within a wavelength of each other (see Fig. 5).
Let both atoms start in ground state and interact with a laser field of frequency
ωl. We now study the total intensity I(ωl) of the emitted radiation as a function
of ωl. Clearly I(ωl) will exhibit single-photon resonance at ωl = ωAeg,ωBeg. In
principle there is also the possibility of two-photon resonance 2ωl = ωAeg +ωBeg.
It turns out that in the absence of source correlations, the two-photon resonance
does not occur, as the two paths

|gA, gB〉 → |eA, gB〉 → |eA, eB〉, and |gA, gB〉 → |gA, eB〉 → |eA, eB〉, (15)

interfere destructively. Thus the source correlations are the key to the two-photon
resonance. In an earlier work the effect of source correlations on such a two-photon
resonance was studied in great detail [7], and recently it has been observed in ex-
periments involving single molecules [12]. Furthermore, very recently we showed
how the source correlation arises in a cavity [13].

Figure 5 Schematic illustration of two photon absorption by two atoms.

6.4 Spatial Coherence and Emission in Presence of a

Mirror

Another class of systems where spatial coherence plays an important role is, for
example, the emission of radiation in front of a metallic mirror [10] or in a cavity
formed by metallic or dielectric mirrors (see Fig. 6). The spectrum of the emitted
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Figure 6 Emission in presence of boundaries.

radiation depends on the distance of the atom from mirror. As a matter of fact both
line width and line shift become b-dependent. If the metallic mirror is treated as a
perfect conductor, then the calculations show that the line shifts, for example, are
determined by the spatial coherence of the field at the location of the atom and its
image. Thus the correlation of the vacuum 〈�E(+)(�b, t)�E(–)(–�b, t′)〉, which is related
to χ(�b, –�b,ω), determines the line shifts and line widths. Explicit results for the
b-dependence of shifts and widths can be found in Refs. [10,14].

6.5 Spatial Coherence-Induced Control of Nonlinear

Generation

We next discuss the effects of spatial coherence in the context of nonlinear optics.
We would show that the generation of radiation using nonlinear processes can be
controlled by source correlations. Consider, for example, the process of second
harmonic generation (SHG) with P = χ(2)E2, E ∼ ei�k,�r (Fig. 7). The efficiency
of the SHG depends on the phase-matching integral

f =
1
V

∫
e–i�q,�re2i�k,�rd3r, (16)

which goes to unity if �q = 2�k. The function f determines the direction in which
second harmonic generation is dominant.

Figure 7 Generation of coherent radiation in the direction �q.

If, however, the field E is partially coherent, then in place of Eq. (16) we need
to consider

f =
∫

d3r′d3r′′e–i�q,�r′e2i�k,�r′′ 〈P(�r′)P*(�r′′)〉 . (17)
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Note that for SHG with coherent radiation

〈
P(�r′)P*(�r′′)〉 ≡ 〈

P(�r′)〉 〈P*(�r′′)〉 ≡ e2i�k.(�r′–�r′′), (18)

and then

I ∝ (vol)2. (19)

On the other hand, for the case of incoherent radiation

〈
P(�r′)P*(�r′′)〉 ≡ |℘|2δ(�r′ – �r′′), (20)

I → |℘|2(vol). (21)

For the partially coherent radiation

〈
P(�r′)P*(�r′′)〉 = |χ(2)|2 〈E2(�r′)E*2(�r′′)〉 , (22)

which under the assumption of a Gaussian field will become

〈
P(�r′)P(�r′′)〉 = 2I2

∣∣µ(�r′ – �r′′)∣∣2 , (23)

where µ(�r′ –�r′′) denotes the degree of spatial coherence of the incident field. Thus,
SHG would now be determined by the integral

∣∣f (�Q)
∣∣2

=
∫ ∫

d3r′d3r′′
∣∣µ(�r′ – �r′′)∣∣2 e�Q.(�r′–�r′′) (24)

�Q = –�q + 2�k. (25)

Clearly, now the direction of SHG would be determined by the spatial coherence
of the field (Fig. 8). Thus spatial coherence can serve as a control parameter for
the nonlinear generation. The above ideas should also find interesting applications
in other areas of nonlinear optics as well.

Figure 8 Role of coherence in nonlinear generation.
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6.6 Universality of Wolf Shift

Before concluding the paper, we would also like to make some general remarks
on the universality and applicability of Wolf shifts in the context of other systems.
We know, for instance, that other standard equations of physics (such as those
describing vibrations of string and heat transport) admit the following relation
between the effect � of the source P at the observation point

�(�r ) =
∫

G(�r,�r′)P(�r′)d3r′, (26)

where G is Green’s function for the underlying equation. The observed quantities
are usually quadratic in �. Thus, observation at the point �r would depend on the
correlations of the source at two points. This is due to the nonlocal nature of the
solution [Eq. (26)].

6.7 Fluctuating Pulses in a Dispersive Medium

As another example of this universality, we can consider the propagation of pulses
in a dispersive medium that is described by the equation

i
∂E
∂z

=
k̃
2
∂2E
∂t2

. (27)

The solution of this equation can be given in terms of Green’s function

E(z, t) =
∫

G(z, t; 0, t′)E(0, t′)dt′; (28)

G =
i

2πzk̃
exp

[
–

i

2zk̃
(t2 – 2tt′ + t′2)

]
. (29)

If the input pulse has fluctuations, then the intensity of the output pulse would be
determined by the correlation in pulses on input plane

I(L, t) =
∫ ∫

dt′dt′′G*(L, t; 0, t′)G(L, t; 0, t′′)〈E(t′)E*(t′′)〉. (30)

Clearly, the intensity of the pulse at the output plane is not completely determined
by the intensity of the pulse at the input plane.
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6.8 Conclusions

In conclusion we have shown that the vacuum of an electromagnetic field has in-
trinsic partial spatial coherence in a frequency domain that effectively extends over
regions of the order of wavelength λ. This spatial coherence leads to a dynami-
cal coupling between atoms and is the cause of source correlations. We showed
how such correlations can lead to a new type of two-photon resonance and how
these are relevant for near-field optics. We further showed how the source spatial
correlations can lead to new phase-matching conditions for nonlinear optical ef-
fects, leading to the possibility of using spatial coherence to produce tailor-made
emissions. We also discussed the universality of source correlation effects and, as a
specific example, we treated the case of the propagation of fluctuating pulses in a
dispersive medium.

The author thanks Emil Wolf for many discussions on the subject of cor-
relation-induced shifts.
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CHAPTER 7

PARADIGM FOR A WAVE

DESCRIPTION OF OPTICAL

MEASUREMENTS

Roland Winston, Robert G. Littlejohn, Yupin Sun, and

K. A. Snail

7.1 Introduction

Radiance, which is the density of radiative power in phase space, has been the sub-
ject of a rich literature over the past 40 and more years [1]. Emil Wolf, whom
we honor herein along with his many students and colleagues, has been a prin-
cipal contributor to the development of this subject. It is a tribute to the work
of Emil Wolf and his school that the development of a wave theory of radiance,
known as “generalized radiance,” continues today as exemplified by Ref. [2]. Our
own work has been complementary to this line of development in that we have
attempted to bridge the gap between theory and practical radiometry. Radiomet-
ric measurements are important in many branches of science and technology. For
example, in illumination engineering, the visibilty of displays is quantified by ra-
diometers. In astrophysics, radiometry in the far infrared has played a critical role
in understanding the large space-time structure of the universe [3]. Of course, in
the short wavelength limit where diffraction effects can be neglected, geometrical
optics suffices and one can dispense with the technical difficulties that the wave
property of light introduces. But it is precisely in the regime where diffraction ef-
fects cannot be neglected that the properties of the measuring instrument have to
be taken into account. Moreover, in the absence of a consistent formalism that does
take the diffraction property of the instrument into account, it may be difficult to
assess the significance of such effects. “Back-of-the-envelope” estimates of diffrac-
tion effects may not be reliable and the practical scientist carrying out radiometeric
measurements is left with little guidance as to the magnitude of such effects. For
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example, an excellent text on radiometry famously states that diffraction effects are
“beyond the scope” of the book. In recent papers [4] we showed how the mea-
surement of radiance can be understood in terms of the statistical properties of the
electromagnetic field and the properties of the instrument. However, the utility of
this approach was limited by the availability of accessable instrument functions that
represent the measuring apparatus. In the process, we exhibited a remarkable anal-
ogy between the result of measuring radiance and the van Cittert-Zernike theorem.
In this paper we first give an overview of a wave description of the measurement of
radiance, referring details to previous publications. Then we compare the theory
to experiments we performed with highly sophisticated radiometers, finding excel-
lent agreement. The excellent agreement with the analytical model suggests that
while our demonstration was confined to the measurement of radiance, it is likely
that similar considerations apply to a wide class of optical measurements, where
diffraction effects are signficant.

7.2 The van Cittert-Zernike Theorem

The well-known van Cittert-Zernike (VCZ) theorem states that for an incoher-
ent, quasi-monochromatic source of radiation, the equal-time degree of coherence
(two-point correlation function) �(r, r′) is proportional to the complex amplitude
in a certain diffraction pattern: the amplitude at r formed by a spherical wave con-
verging to r′ and diffracted by an aperture the same size, shape, and location as the
source [5]. The source could, for example, be a thermal blackbody followed by a
filter that selects a small wavelength range. A familiar geometry is a circular source.
Then, apart from a normalizing factor, �(r, r′) in a transverse plane becomes the
well-known Airy diffraction amplitude:

�(r, r′) = (const.)F(ksθs), (1)

where F(x) = 2J1(x)/x, k = 2π/λ, θs is the angle subtended by the source at r or
r′, and where s = |r – r′|. Recall that �(r, r′) has its first zero at s1 = 0.61λ/θs.
For a numerical example, we consider terrestrial sunlight. Then θs is 4.7 mrad, so
that for λ = 0.5 µm, s1 is approximately 65 µm. This is the scale of the transverse
correlation of sunlight.

7.3 Measuring Radiance

In a previous paper [6], we examined the relationship between the generalized
radiance and the measuring process. We showed how this process can be quan-
tified by introducing the instrument function, which is a property of the measur-
ing apparatus [4]. We showed that the result of the measurement is represented
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by the quantity

Q = Tr(M̂�̂), (2)

where M̂ is a nonnegative-definite Hermitian operator that characterizes the mea-
suring apparatus, and �̂ is the two-point correlation function of the incident light,
viewed as an operator. The instrument function itself is a coordinate representation
of the measurement operator M̂, for example, its matrix element or its Weyl trans-
form. The Weyl transform maps an operator to a Wigner function (for a discussion
of the Wigner-Weyl formalism in optics see Ref. [6]). It is appropriate to associate
Q with the signal. We then derived an analytical form for the instrument function
for a simple radiometer in one space dimension.

One difficulty in using Eq. (2) is that it may not be easy to compute the in-
strument function. Although the one-dimensional calculation in Ref. [6] was not
too hard, we do not expect it to be easy to compute the instrument function for
many realistic radiometers, which are two-dimensional in cross section and which
may have complicated geometry. Therefore we have considered other means for
determining the instrument function. In a previous publication [7] we considered
the possibility that the instrument function could be measured. In this section we
present an alternative approach. That is, we point out a physical interpretation of
the instrument function that is similar to the VCZ theorem. We do this initially
by working through the example of a simple “pinhole” radiometer, and then we
comment about generalizations.

Radiance is the power per unit volume in phase space. Therefore an instrument
for measuring radiance (called a radiometer) has to select a window function in
phase space. For measurements close to the diffraction limit, the exact shape of the
window function is not critical. For this reason we examine a simple radiometer,
illustrated in Fig. 1. The dotted line in the figure is the axis of the radiometer.
Light enters from the left and passes through the circular pinhole of radius a.
It then passes through a drift space of length L, before passing through another
circular aperture of radius b. We assume L � a, b, so the rays are paraxial. The
detector is assumed to measure the total power passing through the aperture b and
can be thought of as composed of tiny, densely packed, independent absorbing
particles (which is a fairly good approximation to what commonly used detectors
like photon detectors, thermal detectors, or photographic film do).

As explained in Ref. [6], the effect of the radiometer on the radiation field is
described by the operator

P̂ = Â(b)D̂(L)Â(a), (3)

which maps the wavefield at the entrance aperture a into the wavefield at the exit
aperture b. Here Â(a) is the aperture or “cookie cutter” operator representing the
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Figure 1 A pinhole radiometer. The dotted line is the axis. Light enters from the left,
passing through circular pinhole a, drift space of length L, and finally circular aperture b.

pinhole, D̂(L) is the Huygens-Fresnel operator representing the drift space, and
Â(b) is the aperture operator for the aperture b. In the approximation L � λ the
drift operator has the kernel (or matrix element)

〈
r⊥|D̂(L)|r′⊥

〉
= –

ikL
2π

eikR

R2 , (4)

where r⊥ = (x, y), r′⊥ = (x′, y′), r = (x, y, z), r′ = (x′, y′, z′), L = z – z′ and
R = |r – r′|. Here z is the coordinate along the optical axis and it is assumed
that z > z′. If in addition we assume rays are paraxial (r⊥, r′⊥ � L), then the
kernel can be written〈

r⊥|D̂(L)|r′⊥
〉

= –
ik

2πL
eikLexp

( ik
2L

|r⊥ – r′⊥|2
)

. (5)

Following the methods of Ref. [6], the instrument is represented by the oper-
ator M̂ = P̂†P̂ whose matrix elements are〈

r⊥|M̂|r′⊥
〉

=
( kL

2π

)2
∫

|r′′⊥|≤b
d2r′′⊥

exp[ik(R1 – R2)]

R2
1R2

2
, (6)

where R1 = |r′ –r′′|, R2 = |r–r′′|, and the integration is over the detector area. In
Eq. (6), the transverse variables r⊥ and r′⊥ are understood to lie in the entrance
plane (the pinhole), so that r⊥, r′⊥ ≤ a. If this condition is not met, the matrix
element is understood to be zero.
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The expression (6) is identical (up to constants) to the mutual intensity evalu-
ated at aperture a of a uniform, delta-correlated source at aperture b (the location
of the detector). Thus, to form the VCZ interpretation of the instrument function,
we replace the detector (at aperture b, in this example) by a delta-correlated source,
and measure the radiation field emanating from the entrance aperture of the in-
strument (the pinhole in this example). The instrument function (at a given plane)
is then proportional to the amplitude at r′ formed by a spherical wave converging
to r and diffracted by an aperture the same size, shape, and location as the detector.
The detector emulates a delta-correlated source. In a sense, this model involves
running the radiometer backwards (exchanging the detector for a source).

This interpretation applies also to other radiometers, for example, those with
lenses, as in Fig. 2. The essential property is that the operator P̂† should serve as a
propagator for wavefields traveling to the left (in the negative z direction), just as P̂
serves as a propagator for waves traveling to the right. The situation is rather like
time reversal in quantum mechanics. Not all time evolutions in quantum mechanics
are time reversal invariant (only those for which the Hamiltonian commutes with
time reversal). In the case of optical fields, it is a kind of “z-reversal” that we need.
Lenses, drift spaces, and apertures are “z-reversal invariant,” as long as evanescent
waves can be ignored. We remark that the same conditions apply to the usual VCZ
theorem.

Figure 2 A practical radiometer. The pinhole is replaced by a lens. The drift space length
is essentially the focal length for distant objects L ≈ f .
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7.4 Near-Field and Far-Field Limits

It is useful to examine the pinhole radiometer and the formalism we have pre-
sented in two limiting cases. First, however, we explain some notation regarding
the correlation operator and function (see Ref. [6] for more details). The mutual
coherence is defined by �(r, r′) = ψ(r)ψ*(r′), where the overbar means a sta-
tistical or ensemble average, and where we use a scalar model for the wavefield
ψ, which in electromagnetic applications can be loosely identified with one of the
components of the electric field. When z = z′, we can associate the mutual coher-
ence with an operator �̂(z) by �(r, r′) = �(r⊥, z; r′⊥, z) = 〈r⊥|�̂(z)|r′⊥〉, so that
�̂(z) = |ψ(z)〉〈ψ(z)|. Thus,

Tr �̂(z) =
∫

d2r⊥|ψ(r⊥, z)|2. (7)

If we identify |ψ|2 with 4π times the energy density, then for paraxial rays
(c/4π) Tr �̂(z) is the power crossing the plane z.

Now let us consider the case that a uniform, thermal source is very close
to the radiometer, which is useful for normalizing the signal. Then at the en-
trance aperture the mutual intensity is proportional to a delta function, �(r, r′) =
I0λ

2δ(r⊥ – r′⊥), where I0 is a constant with dimensions of energy per unit volume.
A thermal source is not really delta correlated, of course; the spatial correlation is
really a sinc function with a width of the order of a wavelength. It is for this reason
that we insert the factor of λ2 into the formula for the mutual coherence, so that
if we need to set r⊥ = r′⊥ for the purposes of taking the trace, we can interpret
λ2δ(0) as being of order unity. In any case, when we compute the signal according
to Eq. (2), we obtain

Tr
(
M̂�̂

)
= I0λ

2 Tr M̂ = I0λ
2Ni, (8)

where we set

Tr M̂ = Ni (9)

for the number of phase space cells in the acceptance region of the instrument (this
point is discussed more fully in Ref. [6]). The trace of M̂ is easy to compute. We
first make the paraxial approximation in Eq. (6), which gives

〈
r⊥|M̂|r′⊥

〉
=

( k
2πL

)2
∫

d2r′′⊥exp
[ ik

L
r′′⊥ · (r⊥ – r′⊥)

]
, (10)
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where the r′′⊥ integration is taken over a circle of radius b. Now setting r⊥ = r′⊥
and integrating r⊥ over a circle of radius a, we obtain

Ni = Tr M̂ =
(kab

2L

)2
=

(πaθ0

λ

)2
, (11)

where θ0 = b/L.
The number Ni has a simple interpretation. A phase space cell in the four-

dimensional k⊥-r⊥ phase space has volume (2π)2. As viewed from the standpoint
of the exit aperture b of the radiometer, the rays passing through each point of
the aperture b occupy a solid angle of π(a/L)2, or a region of k⊥-space of area
π(ka/L)2. The region of r⊥-space is just the exit aperture, of area πb2. Multiplying
these areas and dividing by (2π)2 gives precisely Ni.

Next we consider the case of a very distant thermal source, which effec-
tively produces a coherent plane wave at the entrance aperture, for example,√

I0
√

πθ2
s eikz, so that 〈r⊥|�̂|r′⊥〉 = I0(πθ2

s ). The dimensionless factor πθ2
s will

be explained below. Using this and Eq. (10), we obtain

Q = Tr(M̂�̂) = I0πθ2
s

( k
2πL

)2
∫

d2r⊥ d2r′⊥ d2r′′⊥exp
( ik

L
r⊥ · r′′⊥

)

× exp
(

–
ik
L

r′⊥ · r′′⊥
)

. (12)

It is easiest to do the r⊥ and r′⊥ integrals first (both of which go out to radius a).
These are identical, and are given by∫

d2sexp
(
± ik

L
s · r′′⊥

)
= πa2F(kar′′⊥/L), (13)

where s = r⊥ or r′⊥. This leaves only the r′′⊥ integration (taken out to radius b),

Q = Tr(M̂�̂) = I0πθ2
s

(πa2

λL

)2
∫

d2r′′⊥
[2J1(kar′′⊥/L)

(kar′′⊥/L)

]2
, (14)

which agrees with the expected fraction of the Airy diffraction pattern contained
by the detector of radius b.

7.5 A Wave Description of Measurement

We begin with the statistical properties of the incident wavefield. The two-point
correlation function at the source plane is〈

r⊥|�̂(0)|r′⊥
〉

= I0δ(r⊥ – r′⊥), (15)
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with r⊥ and r′⊥ inside the source, σ, and equal to 0 otherwise. The matrix elements
of the Fresnel free space propagator of a distance L are given by

〈
r⊥|D̂(L)|r′⊥

〉
=

–ik
2πL

eikLexp
( ik

2L
|r⊥ – r′⊥|2

)
, (16)

where k = 2π/λ. The two-point correlation at a plane a distance L from the source
in the Fresnel diffraction regime is:

〈
r⊥|�̂(L)|r′⊥

〉
= I0

∫
d2s⊥d2s′⊥

〈
r⊥|D̂(L)|s⊥

〉 〈
s⊥|�̂(0)|s′⊥

〉 〈
s′⊥|D̂†(L)|r′⊥

〉

= I0

∫
σ

d2s⊥
〈
r⊥|D̂(L)|s⊥

〉 〈
s⊥|D̂†(L)|r′⊥

〉

= I0exp
( ik

2L
(|r⊥|2 – |r′⊥|2)

)( k
2πL

)2

×
∫

σ

d2s⊥exp
( ik

L
s⊥ · (r⊥ – r′⊥)

)

= I0exp
( ik

2L
(|r⊥|2 – |r′⊥|2)

)
Fr(r⊥ – r′⊥). (17)

In Eq. (17), Fr(r⊥ – r′⊥) is the Fourier transform of the source area; it is the VCZ
result for the far-field two-point correlation function.

We will be testing two source geometries, circular and square. For the square
geometry, Fr is

Fi(r⊥ – r′⊥) =
( 1
π

)2 1
(x – x′)(y – y′)

sin
[ kd

2L
(x – x′)

]
sin

[ kd
2L

(y – y′)
]

, (18)

with d as the linear dimension of the source. For the circular geometry, Fr is

Fi(r⊥ – r′⊥) =
( kd

2L

)J1

( kd
2L

|r⊥ – r′⊥|
)

2π|r⊥ – r′⊥| , (19)

with d as the diameter of the source.

7.6 Focusing and the Instrument Operator

The matrix elements for the lens operator are given by

〈
r⊥|L̂(f )|r′⊥

〉
= exp

(–ik
2f

|r⊥|2
)
δ(r⊥ – r′⊥). (20)
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The instrument operator is

M̂ = P̂†P̂, (21)

where P̂ is the propagator from the aperture, Â(a), to the detector Â(b).

P̂ = Â(b)D̂(l)L̂(f )Â(a). (22)

The matrix elements for Â(a) are given by〈
r⊥|Â(a)|r′⊥

〉
= δ(r⊥ – r′⊥), (23)

with r⊥ and r′⊥ inside the aperture a, and equal to 0 otherwise. The matrix ele-
ments for Â(b) are given by〈

r⊥|Â(b)|r′⊥
〉

= δ(r⊥ – r′⊥), (24)

with r⊥ and r′⊥ inside the detector b, and equal to 0 otherwise.
From Eqs. (16) and (20) we have〈

r⊥|D̂(l)L̂(f )|r′⊥
〉

=
–ik
2πl

eiklexp
( ik

2l
|r⊥ – r′⊥|2

)
exp

(–ik
2f

|r′⊥|2
)

. (25)

This gives 〈
r⊥|P̂|r′⊥

〉
=

–ik
2πl

eiklexp
( ik

2l
|r⊥ – r′⊥|2

)
exp

(–ik
2f

|r′⊥|2
)

, (26)

with r⊥ inside the detector, r′⊥ inside the aperture, and equal to 0 otherwise.
The matrix elements of M̂ are given by

〈
r⊥|M̂|r′⊥

〉
=

∫
b

d2s⊥
〈
s⊥|P̂|r⊥

〉* 〈
s⊥|P̂|r′⊥

〉
. (27)

The integration is over the detector area:〈
r⊥|M̂|r′⊥

〉
= exp

[ ik
2f

(|r⊥|2 – |r′⊥|2)
]

exp
[–ik

2l
(|r⊥|2 – |r′⊥|2)

]

×
( k

2πl

)2
∫

b
d2 s⊥exp

[ ik
l
s⊥ · (r⊥ – r′⊥)

]
(28)

= exp
[ ik

2f
(|r⊥|2 – |r′⊥|2)

]
exp

[–ik
2l

(|r⊥|2 – |r′⊥|2)
]

Fi(r⊥ – r′⊥),

(29)
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with r⊥ and r′⊥ inside the aperture a, and equal to 0 otherwise. Here Fi is

Fi(r⊥ – r′⊥) =
( k

2πl

)2
∫

b
d2 s⊥exp

[ ik
l
s⊥ · (r⊥ – r′⊥)

]
. (30)

If the camera is focused on the source,

1
l

+
1
L

=
1
f

, (31)

where L is the distance between the camera entrance aperture and the source. In
this case the nonzero matrix elements are given by

〈
r⊥|M̂|r′⊥

〉
= exp

[ ik
2L

(|r⊥|2 – |r′⊥|2)]Fi(r⊥ – r′⊥). (32)

The VCZ result for the nonzero matrix elements of M̂ are given by Eq. (30)
with the camera focused at infinity, l = f . This results in a slight difference between
the VCZ result and the general result in the phase space volume of M̂ defined by

Ni = Tr(M̂), (33)

with Ni being the number of phase space cells. The infrared camera we used in the
experiment has a circular entrance aperature and a square detector. Thus, we have

Fi(r⊥ – r′⊥) =
( 1
π

)2 1
(x – x′)(y – y′)

sin
[kb

l
(x – x′)

]
sin

[kb
l

(y – y′)
]

, (34)

with r⊥ and r′⊥ inside the circular entrance aperture of radius a and equal to 0
otherwise. The linear dimension of the square detector is 2b. From Eq. (32),

Ni = πa2
(2θi

λ

)2
, (35)

where 2θi = 2b/l is the full acceptance angle. For all practical purposes, the differ-
ence in the values of Ni for the focused case and with l = f is negligible. Hence-
forth, we will mean l = f when refering to Ni.

7.7 Measurement by Focusing the Camera on the Source

From Eqs. (17) and (32), the detected signal, Q, is

Q = Tr
[
M̂�̂(L)

]
= I0

∫
d2r⊥ d2r′⊥ Fi(r′⊥ – r⊥)Fr(r⊥ – r′⊥), (36)
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The normalized signal, Qn, is defined as

Qn =
Q

I0Ni
. (37)

7.8 Experimental Test of Focusing

The matrix elements of the instrument operator modeling the infrared camera used
in the experiment are given by Eq. (32). The experiment was conducted by focus-
ing the camera on the source. The results of the experiments are compared with
Eqs. (36) and (37).

The following is the protocol for processing the data. The value of the signal
when the detector of the camera is flood illuminated by the blackbody radiation
subtracted by the value of the signal when the detector is flood illuminated by
the background is used as the normalization. The measured normalized signal
is obtained by first subtracting the detected signal by the background and then
divided by the normalization. The normalized signal is compared with theory.

The camera has an interference filter and a HgCdTd detector giving a wave-
length window with a peak at λ = 8.8 µm and �λ � ±0.75 µm. The square
HgCdTd detector is of diminsions 75 µm × 75 µm. The focal length of the cam-
era is f = 18.99 mm. In Eq. (32) Fi is then given by Eq. (30), with b = (75/2) µm.

Two circular aperture plates of radii a = 0.136 in. and a = 0.272 in. were
placed in front of the camera aperture. We have Ni = 1.888 for the a = 0.136 in.
aperture and Ni = 7.551 for the a = 0.272 in. aperture. The face of each plate fac-
ing the lens was painted with high emissive paint to provide the background. The
source’s size and shape were controlled by placing aluminum masks with either
square or circular apertures over a blackbody source set at T ∼ 500◦C.

Define Nr as

Nr =
∫

a
d2r⊥

〈
r⊥|�̂(L)|r⊥

〉
, (38)

where the integration is over the camera aperture. Nr can be interpreted as the
number of phase space cells of the radiation field intercepted by the camera aper-
ture. Therefore, Nr can be much less than one without violating the uncertainty
principle (but when it is, the light is coherent at the detector). For a square source

Nr = π
(2aθs

λ

)2
, (39)

and for a circular source

Nr =
(πaθs

λ

)2
. (40)
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Figure 3 Comparison of experiment with theory for the N = 1.888 peak measurements.
Filled circles are data points.

Here θs is the half-angle subtended by the source at the camera’s entrance aperture.
For the square source θs = d/2L, with d being the linear dimension for the square
source. For the cirular source θs = d/2L, with d being the diameter of the circular
source.

The results of the measured normalized signal are plotted with theory versus
Nr in Figs. 3 and 4. The agreement with experiment is highly satisfactory.
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Figure 4 Comparison of experiment with theory for the N = 7.551 peak measurements.
Filled circles are data points.

7.9 Conclusion

We have demonstrated a consistent approach to incorporating the diffraction prop-
erties of the instrument in optical measurements. We used a remarkable analogy
between the result of measuring radiance and the van Cittert-Zernike theorem that
exploits the symmetry between an incoherent source whose radiance is being mea-
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sured, and the detector whose signal represents the measurement. It turns out that
the measured radiance is represented (up to an overall constant) by the double
integral over the instrument aperture of the mutual intensity of the field and the
mutual intensity of a delta-correlated source of the same size, shape, and location
as the detector. One may therefore form a perspective of the subject. “Generalized
radiance” is a useful calculational tool that comes in a variety of forms ranging from
the classical Wigner distribution [1] to the “Alonso function” [2]. “Measured ra-
diance” is the value obtained by a particular instrument that can be calculated by
the techniques described in this paper. While we have expressed our results in the
context of radiometry, one would go through a similar analysis in analyzing the
detection of any partially coherent wave. The signal is represented by the double
integral of two mutual coherence functions. One of these is for the incident wave,
the other arising from the detector considered as a source. It is likely that entirely
similar considerations may apply to other signal detection processes where diffrac-
tion effects are important.
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CHAPTER 8

MILLIMETER WAVE MMIC
HOLOGRAM BEAM FORMER

Vladimir A. Manasson and Lev S. Sadovnik

8.1 Introduction

A physical optics approach has been found to be very fruitful in designing anten-
nas that make use of the diffraction phenomenon. Flexibility in forming a desired
wavefront is achieved by creating a complex diffraction grating, also known as
holographic beam forming. Based on this notion, a new type of electronically con-
trolled beam former has been demonstrated. The device operation is based on a
real-time reconfigurable hologram formed by electron-hole plasma injected into a
planar semiconductor waveguide. The device operates at millimeter-wave frequen-
cies and is capable of forming a wavefront with an arbitrary profile. Digital con-
trol is achieved through the use of a millimeter wave/microwave integrated circuit
(MMIC) design that holds the promise of unparalleled cost effectiveness. Poten-
tial applications include smart antennas, imaging radar, and communications.

8.2 Principles of Operation

The presence of free carriers in a solid body strongly affects its optical character-
istics. For metals, this phenomenon has been known for over a century (Drude,
1900). However, for a given metal electron density it is a rather fixed value, and
it depends only very slightly on external conditions (such as temperature, pres-
sure, etc.). In contrast, semiconductors represent media into which electrons and
holes can be easily injected. Injection of only one type of carrier (electrons or holes)
usually leads to the formation of charge carrier clouds, which limits the injection
level. Bipolar injection (injection of both electrons and holes) produces a quasi-
neutral formation called electron-hole plasma. The achievable plasma density is
sufficient to cause local changes in the real and imaginary parts of the dielectric
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constant of the material, generating changes in reflection, absorption, refraction,
and phase velocity, and causes coherent scattering. Plasma-induced changes alter
the propagation of electromagnetic waves passing through the medium. In other
words, a semiconductor medium with a nonuniform distribution of electron-hole
plasma acts as a hologram, with spatially and temporarily variable refractive index.
As a result, the wavefront changes and its shape depends on the plasma pattern. By
varying the plasma pattern, one can control the wavefront and thus shape the re-
sulting beam(s) and aim it (them) in the desired direction(s). The injected plasma
is a nonequilibrium formation and is subject to fast recombination. Typically, the
plasma lifetime varies from 10–10 sec to 10–5 sec. This means that the hologram
pattern can practically be updated (rewritten) in real time. Plasma can be excited
with the use of various techniques, such as photoconductivity [1–17] and current
injection that was used to excite plasma patterns in optically controlled beam form-
ers. Another way to create plasma patterns is to use PN-junctions, PIN structures,
heterostructures, or other carrier-injecting electrodes. In this paper we present the
results of a study of a plasma hologram beam former, where plasma patterns are
created by carrier injection via heavily doped P- and N-electrodes.

The key element of a beam former is a semiconductor chip holding a linear
array of individually controlled P- and N-electrodes that constitute an MMIC
aperture. Biased electrodes inject carriers into their vicinity, while unbiased ones
do not. As in the case of photoinjection, the resulting plasma pattern acts as a
hologram that controls the wavefront. To change the latter one needs to alter the
plasma pattern, i.e., change the biasing of the electrodes.

We have simulated beam forming by an MMIC aperture comprising 220 elec-
trode pairs. Our simulations have demonstrated high flexibility in controlling the
beam profile. Some examples are shown in Fig. 1 through Fig. 4. In particular,

Figure 1 Simulation of continuous beam steering in azimuth plane. Frequency:
76 GHz; aperture size: 75 mm.
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Fig. 1 shows how MMIC digital hologram regenerates diffraction beam in the ar-
bitrary direction providing continuous beam steering. Figure 3 shows generation
of a complex wave font consisting of eight main lobes. Figure 4 demonstrates two
lobe variable shape patterns, and Fig. 5 shows the ability of forming a deep null at
an arbitrary position. As seen from the simulation the device is capable of forming
a single pencil beam in an arbitrary direction, i.e., it can perform a scan. It can also
create several beams simultaneously, the direction and shape of each being inde-
pendently controlled. It can also form wide beams with deep “nulls” blocking the
reception (or transmission) from (to) undesired direction(s). All those features are
very useful for “smart” antenna applications.

Figure 2 Beam pattern for a hologram that forms eight simultaneous pencil beams.
Frequency: 76 GHz; aperture size: 75 mm.

Figure 3 Beam pattern for a hologram that forms two simultaneous beams of different
shapes.
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The MMIC digital hologram beam former has been implemented using sil-
icon chips as shown in Fig. 5. A photo of the beam former is shown in Fig. 6.
A cylindrical lens covers the MMIC aperture and is used to form the wavefront
in the elevation plane, while the hologram forms the beam shape in the azimuth
plane.

Figure 4 Beam pattern for a hologram that forms a wide beam with a deep “null” at the
center.

Figure 5 Examples of semiconductor chips for plasma hologram beam formers—the
single chip concept.
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As predicted by preliminary simulations, the antenna experimentally demon-
strated continuous beam steering over a wide azimuth angle. Some of the beam
patterns are shown in Fig. 7. They were measured at the frequency of 76 GHz in
the transmitting mode using a near-field measurement technique. We also tested
the beam former in the receiving mode. The device is capable of forming multiple
simultaneous beams. Some of the measured beam patterns are shown in Fig. 8.
The beam patterns comprise two beams, each controlled independently.

Figure 6 Beam former assembly in a transmitting mode. Beam former includes MMIC
aperture, dielectric rod feeder, cylindrical lens, driving electronics, cables connecting
MMIC aperture and driving electronics.

Figure 7 Fifteen overlapping beam patterns that demonstrate beam-former scanning
capabilities. Operation frequency: 76 GHz. Data was obtained using a near-field antenna
measurement system.



174 Millimeter Wave MMIC Hologram Beam Former

Figure 8 Examples of beam patterns for MMW holograms that generate two simulta-
neous beams. Each beam can be directed independently from the other. Data was obtained
with near-field antenna measurement system at a frequency of 76 GHz.

Summary We have simulated and successfully demonstrated the operation of a
single-chip MMIC plasma hologram beam former. The device provides excellent
beam control over a steering range of 70 degrees. The switching time between two
consequent hologram patterns was shorter than 10 microseconds. Potential appli-
cations for the new beam-forming technology include smart antennas for imaging
and surveillance radars, as well as satellite, mobile, and point-to-point communica-
tions. The MMIC embodiment of the hologram aperture projects a dramatic cost
reduction compared to competing technologies such as phased-array antennas.
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Appendix. A Personal Perspective

As many of us have, I, Lev Sadovnik, learned about Prof. Emil Wolf from his and
Max Born’s classic text Principles of Optics. In addition to its educational value, the
book was a source of a fateful coincidence in my life.

Going back to those days in 1978, I find myself a senior at Chernovtsi State
University (now Ukraine), studying optics. Professor Polyanski the head of Optics
Department brought a copy of the just-translated Born and Wolf book (Fig. A1)
to the classroom, as unusual as it was under the Soviet era educational system, and
announced that the Theoretical Optics course would include studying some of the

Figure A1 The book and its translation.
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book’s chapters. He further suggested that students in that small class would be
assigned a chapter each to actually give a lecture on the subject. Yours truly was
given the lengthy and tedious van Cittert-Zernike Theorem. After sweating over
it for quite a while, I delivered a lecture and eventually graduated with a diploma
that read “Physical Optics.”

Eleven years later, I came to the U.S., and looking for my first job was knocking
on the door of a company called . . . Physical Optics Corporation. My job interview
was with the company’s Chief Technical Officer Dr. Tomasz Jannson. Lament-
ing about the paucity of serious optical background among this generation’s sci-
entists, Dr. Jannson asked if the author heard of Principles of Optics. Hearing a
positive response, Dr. Jannson inquired if I had actually read it. Feeling that my
future job might be hanging on the answer to this question, the author produced a
positive reply. In turn, probably noting some hesitation in that reply, Dr. Jannson
went on to inquire how much of the book’s content the author remembered. Par-
alyzed by the question, what I could immediately recall was, for the most part, the
book’s cover, so I mumbled something about coherence, diffraction, and lens de-
sign. Dr. Jannson didn’t buy that and, in an attempt to clear it once for all, asked
pointedly about . . . van Cittert-Zernike theorem. Needless to say, Dr. Jannson was
quite impressed when the author produced not only the theorem’s formulation,
but even the outline of its proof. As a result, I was offered the job. Some years
later I was fortunate to meet Prof. Wolf himself, and was privileged to personally
communicate on the subject of diffraction and coherence with him.

The research described below started when the two authors, VM and LS,
discussed how to apply a rewritable hologram concept to the millimeter wave
(MMW), so that all the advantages of achieving the desired field distribution via
the diffraction phenomena could be utilized. While all the hardware components
of MMW optics are quite similar to those of conventional optics, the missing part
has been the material to record a dynamic diffraction pattern. Such a material, the
semiconductor has been proposed by VM and the antenna developed based on this
approach is discussed below.
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CHAPTER 9

DIGITAL HOLOGRAPHIC

MICROSCOPY

Anthony J. Devaney and Pengyi Guo

9.1 Introduction

More than a half century ago Dennis Gabor proposed that conventional lens-based
imaging systems, such as the optical microscope, could be replaced by a new type
of imaging system that is theoretically free of aberrations and can achieve numer-
ical apertures arbitrarily close to unity [1,2]. This new idea was, of course, holog-
raphy, which Gabor referred to as “microscopy by wavefront reconstruction.” In
this paper a modern version of Gabor’s original scheme for lensless microscopy is
presented that employs a fully coherent (laser) source and no imaging lenses and
generates images on a digital computer using algorithms that mimic (and, actu-
ally improve upon) the imaging operation of a diffraction limited lens system. This
class of imaging systems, which we will refer to as “digital holographic micro-
scopes” (DHM), generate complex-valued images of amplitude, phase, and even
three-dimensional objects by employing digital holography in combination with
state-of-the-art computer algorithms to implement the imaging process.

The key experimental ingredient of DHM is phase-shifting holography
(PSH) [3–5] an idea originally conceived by Gabor in the 1950s and later pub-
lished in 1966 [6]. PSH supplies the means of determining the complex ampli-
tude of a coherent wavefield diffracted by an object by digitally recording multiple
Gabor (in-line) holograms over an aperture that forms the entrance pupil of the
microscope using, for example, a CCD array. Although other schemes exist for
performing this task without the need of holography (such as the use of phase re-
trieval algorithms [7,8]), PSH is an easily implemented and accurate method that
is ideally suited to DHM and is exclusively employed in the microscopes discussed
in this paper.

179
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The key computational ingredient of the DHM is the process of field back
propagation. This mathematical operation was developed and refined in the 1960s
largely through the work of Wolf and coworkers [9–11], who employed plane
wave expansions [12,13] (also called angular spectrum expansions) to implement
the back propagation operation. Field back propagation is used in DHM to form
the coherent images of thin objects from the object’s diffracted wavefields as de-
termined by PSH and is also a key ingredient of the algorithms of diffraction
tomography (see discussion below) that are employed to image 3D objects.

One of the primary advantages of DHM over conventional microscopy is that
it can yield images of phase objects without the necessity of staining or of employ-
ing ad-hoc phase contrast imaging schemes that generate images not directly or
quantitatively related to the object’s physical properties. An even greater advantage
is that a DHM can be configured to generate quantitative, high-quality images
of 3D semitransparent objects. This is accomplished by configuring the micro-
scope in such a way that multiple measurements of the wavefield diffracted by a
3D object for different orientations of the object relative to the optical axis of the
microscope can be performed. The suite of diffracted field data so acquired can
then be processed using the algorithms of diffraction tomography* [14,15] (DT)
to generate a quantitative three-dimensional image (reconstruction) of the three-
dimensional complex index of refraction distribution of the object. The merging of
DHM with DT results in a “lensless fully digital microscope” that has the imag-
ing capability of a modern confocal scanning microscope [17], but at a fraction of
the cost or complexity.

Due to length considerations, the current paper covers only a broad review of
DHM and, in particular, does not delve into the technical or engineering details
of such systems. Also, only a few examples are presented and the reader is directed
to the open literature cited in the paper for more examples and further details.
Finally, we would like to note that this paper is especially relevant to be included
in a collection of papers honoring the work of Emil Wolf since, as is evident from
the list of citations at the end of the paper, he played a fundamental role in the
development of the back propagation and DT algorithms on which the operation
of this class of microscopes depends.

9.2 Conventional Optical Microscopy

A conventional optical microscope can be represented using the generalized model
of an imaging system illustrated in Fig. 1 [12,13]. In this figure, a monochromatic

* The origins of diffraction tomography go back to a pioneering paper by Wolf [16], who showed
that multiple holograms of a weakly scattering object illuminated with plane waves with varying
directions of propagation can, in principle, be used to generate a 3D reconstruction of the object.
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Figure 1 Generalized model of imaging system. A point source of light centered on
the object plane at coordinates (x0, y0) generates a three-dimensional image field whose
complex amplitude distribution over the image plane coherent point spread function is
centered at image plane coordinates (x′, y′). For a unit magnification system illustrated in
the figure the distances from object plane to entrance pupil and image plane to exit pupil
are equal and x′ = x0, y′ = y0.

point source of light located at the coordinates (x0, y0) on the object plane P0 gen-
erates a diverging spherical wave that is converted by the system (microscope) to
a converging spherical wave centered on the image plane at the image plane co-
ordinates (x′, y′). Since the microscope’s magnification M plays no essential role
in the imaging performance of the microscope† we will assume that M = 1 to
simplify the following discussion. In this case the object and image distances are
both equal do = di = d, and the converging spherical wave focuses at the point
x′ = x0, y′ = y0 on the image plane.

The complex amplitude distribution h(x, x′; y, y′) of the image field as a func-
tion of image plane coordinates (x, y) is called the coherent point spread function
(CPSF) of the system and can be expressed in terms of the systems pupil function

† The magnification M is only a means to scale the image and plays no role in the basic imaging
performance, which is governed by the resolution of the microscope.
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P via the equation [12,13]

h(x, x′; y, y′) = C
∫

dξdηP(ξ,η)e–i k
d [ξ(x–x′)+η(y–y′)], (1a)

where C is an unessential constant, k = 2π/λ is the free space wavenumber, and
d the distance of the object and image planes from the system entrance and exit
pupils, respectively (see Fig. 1). The pupil function P depends on the amplitude
and phase of the converging spherical wave over the exit pupil as a function of
the exit pupil coordinates ξ and η, and, in particular, vanishes identically when
ξ2 + η2 > a2, where a is the radius of the entrance and exit pupils. The phase
of the pupil function models defects in the phase of the focused wave from being
perfectly spherical and can be expressed in terms of the so-called aberration function
of the system as discussed in Ref. [12].

In general the pupil function P will depend on the location of the object point
(x′ = x0, y′ = y0), but for small objects contained within a single isoplanatic patch,
as can be expected in most applications of optical microscopy, this dependence is
weak and can be neglected so that h is a function only of the difference coordi-
nates (x – x′, y – y′). Under this assumption the complex image field generated by
a complex distribution of light over the object plane will then give rise to the image
field

ψi(x, y) =
∫

dx′dy′h(x – x′, y – y′)ψ0(x′, y′) = h ⊗ ψ0(x, y), (1b)

where ψ0(x′, y′) is the object field, i.e., the complex field distribution existing over
the object plane and ⊗ denotes two-dimensional convolution. For optically thin
objects illuminated by a monochromatic plane wave the object field can be ap-
proximated by the product of a transmittance function T(x′, y′) with the complex
amplitude of the incident plane wave so that Eq. (1b) reduces to

ψi(x, y) = T̂(x, y) =
∫

dx′dy′h(x – x′, y – y′)T(x′, y′) = h ⊗ T(x, y). (1c)

In this equation T̂ is the coherent image of the object (transmittance function) gen-
erated by the microscope and we have assumed, for the sake of simplicity, that the
illuminating plane wave has unit intensity and zero phase at the sample location.

In conventional optical microscopy, great pains are taken to make the illumi-
nating light source as spatially incoherent as possible. In the ideal case, where the
illuminating plane wave is spatially incoherent and the object being imaged is opti-
cally thin and sufficiently small so it is contained within a single isoplanatic patch,
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the image intensity resulting from an object having a transmittance function T(x, y)
is found from Eq. (1c) to be given by [12,13]

Ii = |ψi|2 = |T̂(x, y)|2 = H ⊗ |T(x, y)|2, (2)

where H(x – x′, y – y′) = |h(x – x′, y – y′)|2 is the incoherent point spread function
(PSF) of the microscope.

Even in its idealized form summarized by the imaging equation Eq. (2) the
conventional microscope is limited in its performance by the quality of its optics
and inherent diffraction effects that are present even if all optical components are
free of aberrations and are “diffraction limited.” In this latter case the ultimate
resolution attainable is determined by the numerical aperture (NA) of the system,
which is equal to the sine of the half angle θ0 subtended by the entrance pupil
as measured from the center of the object plane and is approximately equal to the
ratio of the radius of the entrance pupil a to the object distance d. In terms of
the numerical aperture sinθ0 ≈ a/d the effective resolution of the microscope is
on the order of λ/(a/d) where λ is the wavelength of the illuminating plane wave.
Although it is possible to moderately improve this diffraction-limited resolution
limit via the use of oil immersion techniques the microscope’s numerical aperture
sets an effective upper bound on the spatial resolution that cannot be improved
upon.

The above discussion refers to an “ideal” optical microscope. A real microscope
suffers from a number of drawbacks that go well beyond the limits outlined above.
To begin with, in real applications the illuminating plane wave is not perfectly spa-
tially incoherent, with the result that the simple image formation equation Eq. (2)
is replaced by a complicated, nonlinear transformation between the transmittance
function T(x, y) and the image intensity Ii. The net result of this breakdown of spa-
tial incoherence is to reduce the image quality of the microscope in a complicated
way that is not correctable via improvements in lens quality. Perhaps the great-
est limitations of conventional optical microscopy are its inability to image phase
only and optically thick samples. In particular, in the case of phase-only objects for
which the object intensity I0(x, y) = |T(x, y)|2 is (effectively) constant, the image
Ii carries little or no structural information about the object. In order to overcome
this limitation it is necessary to either stain the sample so as to convert the phase
structure to an amplitude structure that can then be imaged or to employ phase
contrast imaging techniques that have their own set of limitations. In the case of
3D objects (optically thick samples) the situation is even worse. In this case the
object cannot be described via a 2D transmittance function T(x, y), but rather is
described via its 3D complex index of refraction distribution n(x, y, z). The coher-
ent imaging Eq. (1b) still applies, but the object field ψ0 is now related to the 3D
index of refraction n via a three-dimensional mapping similar to a tomographic
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projection of the 3D object onto the 2D object plane [18]. The net result is that
3D samples cannot be successfully imaged by a conventional optical microscope
and either the 3D sample has to be sectioned (thinly sliced), or a costly confocal
scanning microscope must be employed.

9.3 Holographic Microscopy

A modern version of a Gabor holographic system is illustrated in Fig. 2.‡ In this
figure an incident coherent plane wave is split evenly into the upper and lower legs
of a Mach–Zehnder interferometer, and the interference pattern formed between
the wave diffracted by a semitransparent sample placed in the lower leg of the inter-
ferometer and the plane wave propagating in the upper leg of the interferometer is
recorded by the CCD array of a high resolution, monochrome digital camera.§ The
aperture defined by the CCD array of the monochrome camera forms the hologram

Figure 2 Mach–Zehnder interferometer used to acquire digital holograms. A quarter
wave plate is included in the upper leg of the interferometer for use in phase-shifting
holography (PSH).

‡ In fact it can, in principle, achieve numerical apertures larger than unity corresponding to the
measurement of evanescent plane wave components generated by the sample. In this paper we will
not be concerned with the possibility of such superresolution, although it has been achieved by a
number of workers in ultrasound imaging [19].

§ This camera is assumed to contain no imaging lenses. The camera thus records the intensity of
the field across its CCD array and not a focused version of this field.
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recording plane and the entrance pupil Pe of the holographic imaging system. The
wavefield diffracted by the object will be a function of both the transverse coordi-
nate vector ρ = (x, y) and the distance z along the optical axis as measured from
the object plane P0 so that the hologram records the intensity distribution

Ie(ρ) = 1 + I0(ρ) + e–ikdψ(ρ, d) + eikdψ*(ρ, d) (3)

over the region |ρ| ≤ a, where a is the radius of the entrance pupil Pe, and d the
distance from object plane to hologram plane Pe. In this equation ψ is the field
diffracted by the object and I0(ρ) = |ψ(ρ, d)|2 is the intensity of the diffracted
object field over the hologram plane Pe and it is assumed that the plane reference
wave has unit amplitude and zero phase over the object plane P0.

In the second step of Gabor’s wavefront imaging scheme, the recorded holo-
gram defined by the intensity distribution Ie of Eq. (3) is used to reconstruct the
scattered object wave ψ. In Gabor’s original work, the hologram was recorded on
a high-resolution photographic plate and the reconstruction was performed exper-
imentally by illuminating the developed photographic plate (hologram) with the
same plane wave used in the first part of the procedure. In its modern form, the re-
construction is performed on a digital computer by back propagating the measured
intensity distribution Ie (see discussion in Sect. 9.3.2 below). In either case, the
resulting reconstruction has three components corresponding to the three terms
comprising the hologram intensity distribution in Eq. (3). The sum of the inten-
sities of the plane wave and scattered object wave 1 + I0 generate a direct (dc)
beam that has uniform phase over the hologram plane and is thus an intensity-
modulated plane wave that contains no object information. The other two terms
generate virtual and real images of the object (so-called twin images). Of course all
three image fields are superposed and in Gabor’s original scheme it was not possi-
ble to untangle these terms, so the quality of the reconstructed holographic image
suffered.

9.3.1 Phase-shifting holography

In the modern version of the holographic system illustrated in Fig. 2, the hologram
is recorded digitally and the reconstruction is performed computationally on a dig-
ital computer. The use of a digital camera to record the hologram not only allows
the image fields to be generated digitally but also introduces the possibility of re-
moving the interfering dc field and one of the twin image fields discussed above.
This has been accomplished [20] using phase-retrieval algorithms [7,8] and, more
recently, using phase-shifting holography [3–5], an idea that goes back to earlier work
by Gabor himself [6]. In this paper we will restrict our attention to PSH since, at
the present time, it appears to offer the greatest promise for digital microscopy.
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PSH is performed using the modern Gabor holographic setup illustrated in
Fig. 2, where the hologram is recorded using the CCD array of a monochrome
digital camera placed over the hologram plane (entrance pupil) Pe. Unlike con-
ventional Gabor holography, a total of four separate intensity measurements are
performed in PSH corresponding to (a) the intensity of the plane reference wave it-
self (taken to be unity here for convenience), (b) the intensity of the object scattered
field alone I0, (c) a conventional Gabor hologram formed from the interference of
the object scattered wave with a plane reference wave, and (d) a conventional Gabor
hologram formed from the interference of the object scattered wave with a quarter
wave shifted plane reference wave. The two conventional Gabor holograms record
the two interference patterns:

I(1)
e (ρ) = 1 + I0(ρ) + e–ikdψ(ρ, d) + eikdψ*(ρ, d) (4a)

I(2)
e (ρ) = 1 + I0(ρ) – ie–ikdψ(ρ, d) + ieikdψ*(ρ, d), (4b)

where the second hologram employs a quarter wave plate in the upper leg of the
Mach–Zehnder interferometer to generate the π/2 phase shifts in the interference
terms. Because the reference plane-wave intensity and object scattered-field inten-
sities are known (measured), the above two equations can be solved simultaneously
for the object field ψ(ρ, d) boundary value over the hologram plane Pe. This quan-
tity is then used to computationally generate the image of the object as discussed
below.

9.3.2 Digital reconstruction

The interaction of the illuminating plane wave with the sample located in the lower-
leg of the Mach–Zehnder interferometer generates the boundary value of the ob-
ject field ψ0(ρ′) over the plane P0 situated immediately to the right of the sample.
This boundary value field then generates the diffracted object field ψ(ρ, z) that
propagates away from P0 to the entrance pupil plane Pe, where its boundary value
over this plane ψ(ρ, d) is determined using PSH as outlined above. The goal of
microscopy is to use this measured boundary value field to generate an image of
the object field ψ0(ρ′), which, for an optically thin sample, is directly related to
the material properties of the sample via its transmittance function T(ρ′), as dis-
cussed in Sect. 9.2.¶ For a conventional microscope employing lenses, the imaging
step is performed automatically by the lenses and other optical components of the
microscope, while for a fully digital microscope, which is of interest here, it is nec-
essary to employ a reconstruction algorithm to digitally perform the imaging. This

¶ For thick samples, such images are not directly useful and the methods of diffraction tomogra-
phy [14,15] have to be employed, as outlined in Sect. 9.4.
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is done by inverting (or back propagating) [9,10] the boundary value field ψ(ρ, d)
determined by PSH so as to recover the object field ψ0 over the object plane P0.

The back propagation of the object wave from its boundary value ψ(ρ, d) on
the plane Pe to the object plane P0 is best performed using a plane-wave expan-
sion [12,13]. The plane wave representation of the diffracted object wavefield leads
to a theory of imaging for the digital microscope that is closely connected with
Abbe’s theory of image formation in the conventional optical microscope [12,13].
In particular, in Abbe’s theory of image formation the field diffracted from the ob-
ject is decomposed into a superposition of plane waves that propagate away from
the sample into the entrance pupil of the microscope. The job of the imaging optics
of the microscope is to then combine these various plane waves into an image of
the object field ψ0.

The plane wave expansion of the diffracted object field as it propagates away
from the object toward the entrance pupil Pe can be expressed in the form [12,13]

ψ(ρ, z) =
1

(2π)2

∫ ∞

–∞
d2κ, ψ̃0(κ)ei(κ·ρ+γz), (5a)

where

ψ̃0(κ) =
∫

d2ρψ0(ρ)e–iκ·ρ (5b)

is the spatial Fourier transform of the object field

ψ0(ρ) = ψ(ρ, z)|z=0,

with κ = (κx,κy) being the two-dimensional spatial transform vector conjugate to
the space vector ρ. The quantity γ in the plane-wave expansion Eq. (5b) is given
by

γ =
{√

k2 – κ2 if κ ≤ k
i
√

κ2 – k2 if κ > k
, (5c)

where k = 2π/λ is the field wavenumber with λ being its wavelength.
A key ingredient of Abbe’s treatment of the microscope is the observation that

the finite size of the entrance pupil of the microscope limits the range of plane
waves that enter and are processed by the microscope. In particular, only those
plane waves whose transverse wavenumbers κx,κy obey the inequality

κ =
√

κ2
x + κ2

y ≤ ksinθ0 ≈ k
a
d

(6)
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will enter the entrance pupil where θ0 is the half-angle subtended by the entrance
pupil as measured from the center of the object plane P0 and a/d the numerical
aperture of the entrance pupil.‖ On making use of this result we conclude that the
object field that is actually processed in PSH is not given by the full plane-wave
expansion Eq. (5a) but, rather, this plane-wave expansion truncated to plane waves
whose transverse wavenumbers satisfy the inequality Eq. (6). Thus, in particular,
PSH will yield the boundary value

ψ̂(ρ, d) =
1

(2π)2

∫
κ≤k a

d

d2K ψ̃0(κ)ei(κ·ρ+γd), (7a)

where the hat is used to denote the field boundary value determined using PSH
with a finite entrance pupil and a numerical aperture a/d.

The boundary value Eq. (7a) can be Fourier inverted to yield ψ̃0(κ) over the
spatial frequency band |κ| = κ ≤ ka/d; viz.

ψ̃0(κ) = e–iγd
∫

d2ρψ̂(ρ, d)e–iκ·ρ

= e–iγd ˜̂
ψ(κ, d), κ ≤ k

a
d

, (7b)

where ˜̂
ψ(κ, d) is the Fourier transform of the boundary value field over the holo-

gram plane Pe. If Eq. (7b) is now substituted back into the plane-wave expansion
[Eq. (5a)], a band-limited approximation of the object-diffracted wave ψ̂(ρ, z) is
obtained that is valid throughout the region 0 ≤ z ≤ d lying between, and includ-
ing, the object and hologram planes P0 and Pe:

ψ̂(ρ, z) =
1

(2π)2

∫
κ≤k a

d

d2K ˜̂
ψ(κ, d)ei[κ·ρ+γ(z–d)]. (7c)

The “image” of the object field ψ̂0(ρ) is finally obtained by evaluating the back-
propagated field [Eq. (7c)] over the object plane P0 (at z = 0),** i.e.,

ψ̂0(ρ) =
1

(2π)2

∫
κ≤k a

d

d2K ˜̂
ψ(κ, d)ei(κ·ρ–γd). (7d)

‖ This, in turn, leads directly to the resolution limit quoted earlier of λ/(a/d) where a/d is the
numerical aperture of the entrance pupil.

** For an optically thin object characterized by a transmittance function T(ρ) the image field is, in
fact, a coherent image of the transmittance function.
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9.3.2.1 Resolution and equivalent CPSF

The digital holographic microscope described in the preceding section can be char-
acterized in terms of a coherent point spread function exactly of the form Eq. (1a),
describing the imaging performance of a conventional microscope. In particular,

on substituting the definition of ˜̂
ψ(κ, d) in terms of ψ̃0(κ) from Eq. (7b) into

Eq. (7d), we obtain the result

ψ̂0(ρ) =
1

(2π)2

∫
κ≤k a

d

d2K
{∫

d2ρ′ψ0(ρ′)e–iκ·ρ′}
eiκ·ρ

=
∫

d2ρ′ψ0(ρ′)h(ρ – ρ′), (8a)

where

h(ρ – ρ′) =
1

(2π)2

∫
κ≤k a

d

d2K eiκ·(ρ–ρ′). (8b)

By making the change of integration variables κ = (k/d)(ξ,η), Eq. (8b) can
be expressed in the identical form as Eq. (1a), with the constant C = k2/(2πd)2,
and where the pupil function P(ξ,η) is unity if ξ2 + η2 ≤ a2 and zero otherwise.
Thus, in terms of its coherent imaging performance the digital holographic mi-
croscope is equivalent to an isoplanatic, aberration-free, diffraction-limited micro-
scope of an equal numerical aperture. However, unlike a conventional microscope
that operates as an incoherent imaging system, the holographic microscope is a
coherent imaging system and, thus, has the capability of imaging phase objects.

9.3.3 Examples

In this section we present two examples comparing the imaging performance of
DHM with digital Gabor holography and with conventional white light imaging.
The experimental setup for DHM is shown in Fig. 2. A polarized He-Ne laser
with a wavelength of 633 nm and power of 5 mW was used as the light source.
The phase shift of the reference wave in PSH was obtained by placing a quarter
wave plate in the upper arm of the Mach–Zehnder interferometer illustrated in the
figure. We used a lensless ten-bit-per-pixel monochromatic CCD camera having a
maximum resolution of 1024 × 768 pixels, with each pixel being 6.7 µm square.
The camera’s CCD sensor array was positioned at about 44 mm from the object.
Four intensity measurements consisting of (1) the intensity of the reference wave
alone, (2) the intensity of the object diffracted wave alone, (3) a Gabor hologram,
and (4) a second Gabor hologram using a quarter wave shifted-reference wave
were performed.
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The first example used an object consisting of a 50-µm width slit and com-
pared the performance of conventional digital Gabor holography with DHM as
described above. The results are shown in Fig. 3. The conventional holographic
image shown in the top of this figure was obtained by back propagating the inten-
sity distribution corresponding to the first of the two Gabor holograms acquired in

the experiment. The back propagation was performed using Eq. (7d) with ˜̂
ψ(κ, d)

replaced by

Ĩe
(1)

(κ) =
∫

d2ρI(1)
e (ρ)e–iκ·ρ,

where I(1)
e is defined in Eq. (4a). Because the back propagation operation is linear,

a total of three component images were generated [see discussion under Eq. (3)]
corresponding to a dc image, a real image, and a virtual image. The dc and virtual
image components are clearly displayed in the figure and represent background
noise that obscures and degrades the sought-after real image of the slit. The DHM
image of the slit is shown in the bottom of the figure. The degrading dc and virtual
image fields are clearly gone.

Figure 3 Reconstructed intensity images of a slit (a) using conventional Gabor hologra-
phy; (b) using HDM.
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The second example used an onion cell as the object and illustrates the ability
of DHM to generate images of both the amplitude (intensity) and the phase of
2D objects. The DHM images were obtained using the same procedure outlined
above and employed in generating the bottom image of Fig. 3. Figure 4(a) is the
intensity image of the onion cell obtained using DHM and (b) is the phase image.
In Fig. 4(c) we show an intensity image obtained from a conventional white light
microscope. The reconstructed intensity image obtained using DHM is seen to
agree closely with the image acquired by the light microscope. However, the phase
image provides additional information about the onion cell’s internal structure that
is not available in the conventional white light image.

(a) (b)

(c)

Figure 4 (a) Reconstructed intensity image of onion cells by DHM; (b) reconstructed
phase image of onion cells by DHM; (c) image of onion cells viewed under a conventional
white light microscope.
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9.4 3D Microscopy

The problem posed by 3D (optically thick) objects is that a single coherent image
generated by a digital microscope (or any other microscope for that matter) is nei-
ther simply nor unambiguously related to the internal 3D structure of the object as
defined, for example, by its complex index of refraction distribution†† n(r). In par-
ticular, for a weak scatterer assumed to be centered on the optical axis behind the
object plane P0, the object field and 3D object are related by an integral equation
of the general form [14]

ψ0(ρ) =
k2

2π

∫
d3r′δn(r′)eikz′

G0(ρ – r′), (9)

where δn(r′) = [n(r′) – 1] is the deviation of the 3D index of refraction distribu-
tion of the object from free space and G0 is the free space Green function

G0(R) =
eikR

R
,

with R = |R|. Equation (9) can be viewed as a transformation from the 3D
complex-valued function δn(r) to the 2D object field ψ0(ρ). It is apparent from
simply counting degrees of freedom that a coherent image of the object field ψ̂0
(which has two degrees of freedom) will not suffice to uniquely determine δn(r)
which, of course, has three degrees of freedom.

The situation described above is completely analogous to what occurs in com-
puted tomography (CT) [18], where a single tomographic measurement of a 3D
object is related to the object via a projection, which, like Eq. (9), is an integral
transform of a function that describes the 3D internal structure of the object. In-
deed, in the limit where the wavelength λ of the incident field used in the digital
microscope is much smaller than the scale at which the internal structure of the
object varies [Eq. (9)] reduces to [21]

ψ0(ρ) ≈ C
∫

dz′δn(ρ, z′),

where C is an unessential constant. The above equation defines a tomographic
projection of δn onto the object plane P0 and, as in CT, a complete determination of
the index of refraction distribution in this short wavelength limit then requires that
†† We remark that although a holographic image is three-dimensional, it has, in fact, only two de-

grees of freedom corresponding to the two degrees of freedom of the hologram recording plane.
Thus, a coherent image of a 3D semitransparent object contains, in fact, very little information
about the internal structure of the object (see Sect. 9.4.1).
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a number‡‡ of such projections be available, with each projection corresponding
to a different orientation of the object relative to the optical axis of the microscope.
This can be accomplished by placing the 3D object on a gimbaled mount that can
be rotated about both the x and y axes of the microscope, and then producing a
set of coherent digital images of the object placed in varying orientations relative
to the microscope optical axis. The actual determination of the index distribution
n(r) from this set of images (projections) can then be accomplished via a number of
CT reconstruction algorithms, the most common being the filtered back projection
algorithm [18].

In the more general case, where the wavelength cannot be assumed to be much
smaller than the scale at which the object varies, it is still necessary to perform a
number of experiments using, for example, the same experimental procedure out-
lined above. The only difference between this more general case and the short
wavelength case is that the CT reconstruction algorithms can no longer be em-
ployed and the algorithms of diffraction tomography (DT) are required to process
the complex image fields acquired in the sequence of digital images. Due to space
limitations, we will not discuss in any detail the theory of DT here but refer the
reader to the rather extensive literature on this subject (see, for example, Ref. [15]
for a review of the theory of the subject). Also, we will not review early attempts at
optical 3D coherent imaging that employed conventional CT algorithms or ad-hoc
inversion methods that preceded DT. A rather extensive listing of this literature
can be found in Ref. [23]. It is worthwhile, however, to briefly outline the steps
required to generate a reconstruction of a 3D object from a set of coherent images
using the so-called filtered back propagation algorithm [14,22] which is the DT
generalization of the filtered back projection algorithm of CT [18].

9.4.1 Filtered back propagation algorithm

Let us assume that a 3D semitransparent object is mounted in such a way that it
can achieve varying orientations relative to the optical axis of a digital holographic
microscope such as illustrated in Fig. 2, and a sequence of entrance pupil boundary
value fields are determined using, for example, PSH as discussed in Sect. 9.3.1.
We can regard the object as being fixed (nonrotating) in space and the microscope
as rotating around the object, with its optical axis (and incident plane wave direc-
tion) defined by the unit vector s0, which, in the ideal situation, can completely
cover the unit sphere. For any given relative orientation between the object and
microscope we can form a partial image of the 3D object by simply back propa-
gating the entrance pupil boundary value field into the space region occupied by

‡‡ Theoretically, an infinite number of projections are required for complete determination. Of
course, in practice only a limited number are employed, which then yield an approximation to
the n(r).
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the object. This back-propagated field corresponds, in fact, to the virtual image
field that is generated in a holographic reconstruction procedure as discussed in
Sect. 9.3.1 and is computed from the entrance pupil boundary value field using
Eq. (7c). By then superimposing a set of these 3D holographic images constructed
from different object/microscope orientations (as defined by the unit vector s0), a
composite image is generated that encompasses many “views” of the object in a
manner reminiscent of computed tomography [18].

The imaging procedure described above fails to account for the fact that the
“source” of the diffracted object field is not the object’s index of refraction devia-
tion δn(r) alone, rather it is the product of this function with the amplitude of the
incident plane wave* exp(iks0 · r). Thus, any partial image formed by back prop-
agating the diffracted object field as measured over the microscope entrance pupil
will generate an image of the quantity

F(r) = δn(r)eiks0·r

and, hence, must be multiplied by exp(–iks0 · r) to isolate out the complex index of
refraction deviation δn(r).

A second problem with the above-described imaging scheme is that it fails to
account for overlap of information from different “views” of the object. In order to
remove this redundancy, it is necessary to first convolutionally filter the measured
pupil boundary value fields using a universal filter that is independent of the object
prior to the back-propagation step. The filtering operation corresponds to a simple
multiplication in spatial frequency space so that each partial image is given by an
expression of the form

δ̂n(r; s0) =
e–iks0·r

(2π)2

∫
κ≤k a

d

d2K H̃(κ) ˜̂
ψ(κ, d; s0)ei[κ·ρ+γ(z–d)], (10)

where H̃(κ) is a universal filter, and where the Cartesian coordinates (ρ, z) of the
vector position r are relative to the (rotating) coordinate system of the microscope.
Finally, by linearly superimposing a full set of such partial images one can generate
the composite image

δ̂n(r) =
∫

4π
d�s0 δ̂n(r; s0)

=
1

(2π)2

∫
4π

d�s0 e–iks0·r
∫

κ≤k a
d

d2KH̃(κ) ˜̂
ψ(κ, d; s0)ei[κ·ρ+γ(z–d)]. (11)

* This is clear from Eq. (9) and is in complete agreement with the case of a thin object where the
object field ψ0 is the product of the transmittance function with the amplitude of the illuminating
plane wave on the object plane (cf., discussion in Sect. 9.2).
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The algorithm Eq. (11) is the filtered back-propagation (FBP) algorithm of
diffraction tomography [14,22]. Its name derives from the sequence of steps re-
quired to generate the 3D image (reconstruction): (1) convolutional filtering of the
data, (2) back propagation of the filtered data, and (3) summation over “views,”
where each “view” of the object corresponds to a different plane wave direction s0.
It is important to note that the back-propagation step (2) is performed relative to
the rotating microscope Cartesian-coordinate system. It is necessary to interpolate
the resulting partial image onto the fixed Cartesian-coordinate system of the object
in order to construct the composite image Eq. (11), i.e., prior to summing over
views. A detailed derivation of the FBP algorithm is presented in Ref. [14] and
its computer implementation is presented in Ref. [22].

Coherent imaging of 3D weakly scattering objects using DT has been per-
formed by a number of workers. The first work was performed using phase re-
trieval techniques [7,8] applied to intensity scans obtained using a scanning pho-
todetector [23,24]. Later work employed a monochrome digital camera, but again
used phase retrieval rather than PSH to deduce the phase of the optical field from
its measured intensity distribution [25]. An excellent example of the use of DT
in this class of applications is given in Ref. [26] and is reproduced in the latest
edition of Born and Wolf (Ref. [12], p. 716).

9.5 Concluding Remarks

We have presented a general description of digital holographic microscopy but we
have not delved into the practical and engineering details of DHM systems nor
explored their potential use in industrial, medical, and biological applications. Al-
though DHM has a number of attractive attributes such as simplicity and low
cost, it also suffers from some practical deficits such as pixel depth (in bits per
pixel) and size, and the (limited) array size of current state-of-the-art CCD arrays,
all of which translate into degraded performance of the DHM. Also, in order to
make such systems commercially viable the entire process of acquiring the multi-
ple holograms required by phase-shifting holography (PSH) has to be efficiently
automated so that the microscope can generate images in real or, at least, near real
time. Although this is probably easily accomplished for 2D samples, it presents a
much more formidable barrier for 3D objects where multiple “views” of the object
are required, corresponding to multiple orientations of the object relative to the
optical axis of the microscope.

In addition to the practical considerations outlined above, we have not dis-
cussed in any depth the details of the diffraction tomographic (DT) reconstruc-
tion algorithms without which 3D DHMs cannot function. In order to produce
high-quality and quantitative reconstructions of 3D objects, these algorithms must
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account for diffraction within the object and also must account for multiple scat-
tering between the object and the physical cell in which they are placed. Typically,
this cell is a test tube filled with an index-matching fluid [20,23], and the multiple
scattering between the test tube and sample has not, as yet, been adequately taken
into account in the DT reconstruction algorithms.

Finally, we mention that other alternatives exist for implementing a DHM.
First, phase-retrieval algorithms [7,8] can be used to deduce the complex ampli-
tude of a diffracted object field from multiple intensity measurements without the
use of PSH [20,23,25]. An alternative approach was suggested by Wolf [27] that
employs a single off-axis reference beam hologram, rather than a Gabor hologram,
to deduce low spatial frequency components of the diffracted object field. In the
case of 3D objects it is also possible to use single, Gabor (digital) holograms [25]
since the degrading effects of the zero-order and real image fields are reduced
significantly in the 3D reconstruction process [28]. Finally, it is possible to use
PSH in conjunction with a lens-based optical imaging system to generate high-
quality coherent images of 2D amplitude, phase objects, or 3D highly reflecting
objects [4]. The advantage of this latter procedure is that it can yield high numer-
ical apertures for limited-sized CCD arrays but has a number of other disadvan-
tages such as cost of the optics, increased speckle noise, and limited application to
3D semitransparent objects.
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Wolf Anecdotes

When I was a graduate student with Emil we had a number of ”excited technical
conversations” that some would describe as ”fights.” On one of these occasions
Joe Eberly, who, at that time, had an adjoining office to Emil, came running into
Emil’s office thinking that we had physically attacked each other. Many years later
Emil had a post doc, Yagin Lee, from China who was not accustomed to argu-
ing with his professors nor of interacting with them in an “active” manner as is
common between Emil and most of his students. During one of their early tech-
nical discussions Emil became somewhat “excited” whereupon Yagin became very
upset, hinking that he had somehow offended Emil and would now be sent back
to China. Emil, seeing this response from Yagin assured him that everything was
okay and that in America, and especially within his research group, this type of
interaction was normal and was not to be taken personally. He went on to men-
tion the terrible sounding fights that he and I had while I was a graduate student
but that we were best of friends and see each other at least once every year. A few
months later Emil mentioned to Yagin that I was going to be visiting him in a few
weeks time. Upon learning this, Yagin blurted out: “Professor Wolf, can I watch
you and Dr. Devaney have a fight.”

Upon his first visit to Schlumberger Doll Research Labs, where Professor Wolf
was hired as a consultant, he was invited to lunch by the Director of the Laboratory
and various Department heads. Unfortunately, I did not attend this luncheon due
to a previous commitment and only have the following story secondhand from
Emil himself. The luncheon was held at the Elms Inn in Ridgefield, Connecticut,
which is an historic and well-known Inn and European restaurant that particular
day, they were serving Wiener Schnitzel as a special entree. Now, anyone who
knows Emil knows that this is his absolutely favorite dish and that he will search
for this item on the menu of every restaurant he visits. Unfortunately (for Emil)
he, as the guest of honor at this luncheon, was given the privilege of ordering
first. The problem was that the Wiener Schnitzel dish was very expensive and in
order not to appear greedy Emil ordered some other less expensive item (probably
a hamburger). To Emil’s great dismay everyone else at the table then proceeded
to order the Wiener Schnitzel. The Director of the lab even commented on how
excellent the dish was and that Emil certainly should have gotten it rather than his
hamburger. Emil made me take him to the Elms at least once on each of his many
visits to Schlumberger after that day but, alas, Wiener Schnitzel never appeared
again on the menu.
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Anthony J. Devaney (left) and Pengyi Guo.

Emil and Marlies Wolf with Tony Devaney at the AFOSR annual meeting in San
Antonio, Texas, 2003.
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On one of his subsequent visits to Schlumberger, Emil and his wife Marlies,
my wife Amy and I had dinner at Touchstones, which is a bar/restaurant in Ridge-
field that has decorated their dinning room with wall-to-wall old books. Emil com-
mented on how lousy these books were. He had heard that they bought them for
about a penny a pound since no one wants them. A few days later Emil, some of
our colleagues from Schlumberger and I had lunch at this restaurant. Prior to our
arrival I hid a copy of Born and Wolf among the “crappy” books lining the walls
of the restaurant. During lunch I asked Emil to recite this story of his about the
nature and value of the books on the wall. In Emil’s typical fashion he gave a lively
and spirited discourse on these valueless books whereupon I reached up and pulled
down Born and Wolf from the shelf immediately beside our table. You can guess
the rest.
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CHAPTER 10

COLORED SHADOWS:
DIFFRACTIVE-OPTICAL

CROSS-CORRELATIONS IN THE

HUMAN EYE: THE MISSING LINK

BETWEEN PHYSICS AND

PSYCHOLOGY, NEWTON AND

GOETHE

Norbert Lauinger

The human eye is a powerful illuminant-adaptive trichromatic optical sensor. The
phenomenon of colored shadows in twilights, described by Goethe and leading to
a controversy among Newton and the community of physicists, shows the full cir-
cle of opponent and complementary colors adding to white. The colored shadows
can be explained by von Laue interferences in the visible spectrum and diffractive-
optical cross-correlations between global and local information in the diffractive-
optical hardware of the human eye. They illustrate the most elementary—the
spectral—transformations from physics into psychology in human vision. Scatter-
ing of global information in aperture space and diffraction of local information in
image space of optical imaging systems lead to spectral/4D-spatio-temporal opti-
cal transformations into reciprocal grating space (Fourier/photoreceptor space) in
the near field behind the retina. Three-dimensional (3D) grating-optical chromatic
resonance—following von Laue’s equation—is governing adaptation to varying il-
luminants. The rebalancing of RGB diffraction orders toward a new white norm
by shifting the chromatic resonance guarantees color constancy in human vision.
At physically unbalanced stages in twilight the human eye “does not see what
physically is real at a shadow area, but what the eye optically has calculated”:
the hues of the colored shadows. The spectral transformations from physics into
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psychology, from the objective into the subjective world in vision, are based on
wave/interference-optical transformations linking complementary and reciprocally
interrelated worlds. Emil Wolf ’s prominent statements about the central role of
von Laue’s equation in optics have largely encouraged research on these modern
aspects of physiological diffractive-optical correlators.

10.1 Introduction

Emil Wolf said in his introductory remarks to a Workshop on Physical Optics and
Human Vision at the University of Rochester (June 21–22, 1993): “Now I know
nothing about physiological optics, but I became interested in the possibility that
some of the physical optics phenomena that we have been studying in Rochester—
coherence effects and diffraction on three-dimensional gratings—might perhaps
be relevant to problems of human vision.” And “I will show that the von Laue’s
equations are coded into the field in all planes at any distance from the diffract-
ing medium. This result follows from the basic equations of diffraction tomogra-
phy . . . . Diffraction tomography, holography, and the von Laue equations have a
good deal in common.”

The human eye traditionally is considered as a camera, imaging the visible
world onto a flat 2D array of photoreceptors: the cones in daylight with photo-
chemical RGB spectral brightness sensitivities (Fig. 1), and the rods at dim light

Figure 1 Color in human vision is based on physics, spectral intensity distributions in
only one octave of the visible spectrum (380–760 nm). Sunlight registered under the at-
mosphere statistically varies around an equi-energy white spectrum, a “balanced state” in
physics. Color in the human retina at photopic vision is processed on a trichromatic pho-
tochemical basis in RGB space. The RGB Gaussian spectral brightness sensitivity curves
with relatively large half-widths are peaked at approx. λmax = 560 nmR, 540 nmG,
450 nmB (measurements of Wald/Rushton). At a white sensation, an RGB “balanced
state” in psychology, the areae covered by the three Gaussians are identical.
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with a single spectral brightness sensitivity curve. Each pixel in this model absorbs
“local” information and each photoreceptor in a photochemical cascade transforms
optical into electrical signals. The integration of local RGB triplets in color vision
into coherent groups of data and the reduction of data into receptive fields (from
110 Mio rods and 6.5 Mio cones down to 1.1 million cables in the optic nerve)
seem to be accomplished by neuronal nets in the associative layers of the retina of
the human eye and at later cortical stages. Psychological phenomena in this model
only start in the neuronal software programs of the retina and the cortex, based on
electrical and chemical data processing. This interpretation of the human eye—and
cortex—essentially is due to the histological heritage of Ramon y Cajal with Golgi
staining of cortical tissue, making axons and dendrites visible and leaving nuclear
(multi)layers and cellular phase gratings out of view.

10.2 Diffractive-Optical Hardware of the Human Eye:

The Basis for Spectral Transformations,

Cross-Correlations, and Adaptations in Color Vision

A closer histological study of the prenatal development of the optical hardware
of the human eye (Fig. 2) [10,11] has shown that aperiodic diffractive-optical

Figure 2 Diffractive-optical hardware of the human eye with diffusely scattering polyg-
onal gratings in aperture space (where global information about objects and illuminants
is available), and with a retinal hexagonal 3D diffraction-grating in image space (with
local information about objects), where light is considered to become diffracted into
three—RGB—diffraction orders (DOs) in reciprocal space. In the near field behind the
retina, the trichromatic RGB signals (von Laue interference maxima) are located in con-
centric zones and absorbed by photoreceptors. (Schematic drawing not to scale.)
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cellular multilayers—together with a subwavelength periodic 3D grating in the
cornea [13]—are inserted into aperture space and a periodic diffractive-optical
cellular 3D grating into image space (Figs. 3–4).

Fully transparent for incident light, they all represent optical phase gratings.
The cellular multilayers located in image space are positioned lightward before
the photoreceptors. The photoreceptors themselves are positioned in the near field
behind the retinal 3D grating, in Fourier/Fresnel, or “reciprocal grating” space.
Together they form the so-called inverted retina design of the human eye. Optical
grouping of the data can lead to the reduction of physical data in the single octave
of visible light into concentric RGB triplets in reciprocal space, and to orientational
tuning of the information available to pixels (Fig. 5).

The spectral transformations at this diffractive-optical hardware in color vision
(from intensity and wavelength in physics into brightness, hue, and saturation of
colors in psychology) can be described by three main operations, together repre-
senting the missing link between the outer and inner visible world, physics and
psychology, Newton and Goethe. All three operations are needed to fully explain
the phenomenon of colored shadows.

Figure 3 Polygonal diffractive-optical cellular layers in aperture space of the human eye:
the fibrillar 3D cornea grating (above left) contains about 200–250 lamellae that are su-
perimposed on each other, each having a thickness of 2.0 µm; the collagen fibrils (with
diameters of 320–360 Å) of the stromal lamellae form a three-dimensional array of dif-
fraction gratings [13]. The multilayer polygonal cornea epithelium (above right) has a
three-dimensional cellular structure with 5–6 overlapping layers, with cell-to-cell spac-
ing of 10–30 µm. The cornea endothelium (below left) has a single layer of polygonal
cells with a spacing of 18–20 µm. The lens epithelium (below right) has a single layer of
polygonal cells with a spacing of 5–17 µm [8].
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Figure 4 Hexagonally densest packed 3D diffraction grating in the “inverted” retina of
the human eye (fovea region). Histological retina section from a Rhesus monkey, prepared
by hematoxylin-eosin coloration [1]. REC = photoreceptors; INL = inner; MNL =
middle; ONL = outer nuclear layer; PE = pigment epithelium; SC = sclera. Light
incidence from above. Cell nuclei and cell bodies are shifted sideways in the INL and
MNL only in the center of the fovea. Thus, in the so-called foveola only 5–6 layers of cell
nuclei in the ONL are in front of the cones, which are oriented toward the incident light.

Figure 5 Optical grouping of local data by hierarchically packed hexagonal nuclear lay-
ers with decreasing grating constants: INL (greater) and MNL (smaller grating con-
stants) and ONL (smallest grating constants) together realize the optical grouping of
three RGB-DOs with orientational tuning of pixel information. Optical grouping can be
considered as the basis of receptive-field formation. REC = photoreceptors located in
reciprocal grating space.
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10.2.1 Diffractive-optical transformation of data in image space

into local triplets of RGB diffraction orders (DOs) in reciprocal

space

This transformation can be realized by a small number of layers of hexago-
nally densest packed cellular elements in the retinal 3D grating and is described
by von Laue’s equation in crystal optics (Table 1). The three Gaussian trans-
mission curves of the DOs for perpendicular incident white light are centered
to the RGB –λmax triplet with h1h2h3 = 111 = 559 nmR, 123 = 537 nmG,
122 = 447 nmB (25:24:20). The von Laue interference maxima in reciprocal
space are positioned—following the laws of hyperbolic geometry—on intersec-

Table 1 Von Laue’s equation describing the spectral transformations of visible light
cones incident on a 3D diffraction grating into three RGB diffraction orders (reduction
of spectral data in the visible range into RGB space).

1. Direction cosine of von Laue’s equation (αβγ = aperture of diffraction orders; α◦β◦γ◦ =
aperture of incident light cones):

(cosα – cosα◦)2 + (cosβ – cosβ◦)2 + (cosγ – cosγ◦)2 = 1.

2. Direction cosine for perpendicular light incidence: (α◦ = β◦ = 90◦; γ◦ = 0◦):

(cos2α + cos2β + cos2γ) – 2cosγcosγ◦ = 0.

3. Spectral transformation at perpendicular light incidence: λ = λmax of a h1h2h3 diffraction
order.

λ =
2cosγcosγ◦

cos2α + cos2β + cos2γ
.

4. Resonant von Laue equation with optical resonance factor Vp = nνλ = phase velocity [5] (n =
refractive index), with λh1h2h3 = λ111

λ111 =
2cosγcosγ◦

cos2α + cos2β + cos2γ
xλ111; Vp = ν111λ111 = c = 1.

5. Triplet of RGB diffraction orders (h1h2h3 = 111(R); 123(G); 122(B) with gx, gy, gz = grating
constants x, y, z-axes: gx = 2λ111; gy = 4λ111/

√
3; gz = 4λ111; λ111 =

√
5/4 = 559 nm

cosα =
h1λh1h2h3

gx
; cosβ =

h2λh1h2h3

gy
; cosγ =

h3λh1h2h3

gz
;

λ111 = 0.25
√

5 = 559 nm (R)

λ123 = 0.24
√

5 = 537 nm (G)

λ122 = 0.20
√

5 = 447 nm (B)

λ111:λ123:λ122 = 25:24:20 = λR:λG:λB.
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tions between circles, ellipses, and hyperbolas, representing for concentric light
cones the loci of Fourier terms of equal weights.

10.2.2 Diffractive-optical cross-correlation between RGB data of

local and global information in reciprocal space

Local information is available in image space, global illumination in aperture space.
Emil Wolf at his traditional workshop on modern coherence theory always quotes
Zernike: “The image that will be formed in a photographic camera—i.e., the dis-
tribution of intensity on the sensitive layer—is present in an invisible, mysterious
way in the aperture of the lens, where the intensity is equal at all points [18].”
Global information is scattered by the aperiodic cellular layers in aperture space
onto the retinal 3D grating in image space. It clearly has been documented that
“the human eye exhibits considerable scatter [16].” Global information optically is
superposed to local information in image space. (In addition, the inner human eye
is a rotational ellipsoid [8], therefore a good optical resonator for global informa-
tion). Convolution in real space leads into a multiplication in reciprocal space [15]
and to the optically calculated psychological facts in the spectral domain. “What-
ever exists as reality for psychology is a product of inductive inference . . . . These
infered realities of psychology are relations. A fact is a relation, and the simple ba-
sic fact in psychology is a correlation of a dependent variable upon an independent
one [3].” The diffractive-optical serial product calculations in vector matrices pre-
dict the hues of colored shadows and explain why—at physically unbalanced spec-
tra of illuminants (lights unlike mean sunlight)—“we cannot see, what physically
is real at a shadow area, but only what our eyes optically have calculated.” They also
explain in a specific way why “Human color vision is a spatial calculation involving
the whole image [14].”

10.2.3 Chromatic resonance between the retinal 3D grating and

global information

Chromatic resonance between 3D grating constants and variable spectral compo-
sitions of the overall illumination adaptively recenter color space to a new RGB
white norm. The trichromatic RGB triplet shifts in a direction, where a psycho-
logical rebalancing can compensate an “out-of-balance” state in physics. With this
mechanism our eyes reach good performances of color constancy. Phase velocity
in crystal optics is the resonance factor (Table 2) in x-rays as well as in the visi-
ble [5]. Chromatic resonance tuning of the retinal 3D grating constants is inher-
ent to von Laue’s equation (Table 1). Only after birth is the optical tuning of the
RGB photoreceptors to mean sunlight accomplished and the training of chromatic
adaptation starts.
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Table 2 Ewald’s article on phase velocity as the resonance factor in von Laue’s Equation.



Norbert Lauinger 209

10.3 The Missing Links between Physics and Psychology

in the Spectral Domain

Colored shadows are observed when two lights of different color are combined in a
twilight. Goethe in Ref. [6] describes the interplay of the full moon and a candle,
which produce colored shadows: “One holds a board against the light of the full
moon, with the candlelight a little to one side; and at a relevant distance one holds
an opaque object in front of the board, creating a double shadow. The shadow from
the moon (that) shines on the candlelight becomes a powerful reddish-yellow; and,
in reverse, the shadow created by the candle and illuminated by moonlight will be
seen as almost beautiful blue. Where both shadows meet, and unite as one, the
shadow is black.”

Three categories of experiments with colored shadows—limited only for rea-
sons of brevity to the blue-yellow opponent color axis, but valuable in the full circle
of opponent colors adding to white—will be differentiated to illustrate the recipro-
cal interdependence of physics and psychology in human color vision:

(1) Two colored lights add to an equi-energy white, physically balanced light:
physics and psychology are reciprocally in balance.

(2) A colored and a white light (or two colored lights) add to a physically
unbalanced light: physics and psychology are out of balance. The human
eye does not see what physically is real at a shadow area, but what it has
optically calculated.

(3) A colored and a white light (or two colored lights) add to a physically
unbalanced light, but physics and psychology become rebalanced by op-
tical adaptation, i.e., by 3D grating-optical chromatic resonance with the
changed illumination.

10.3.1 Two colored lights add to an equi-energy white, physically

balanced light: physics and psychology are reciprocally in balance

A light with an equi-energy white “balanced” spectrum (B1 + B2) can, in mul-
tiple ways, be divided into two white or two colored lights B1 and B2, forming a
twilight (Fig. 6). One extreme partitioning is the horizontal division of the equi-
energy spectrum into two white lights, where the two shadows become gray. At the
other extreme—the vertical division of the equi-energy spectrum into two colored
lights—the two shadows reach the fully saturated hues of a pair of opponent colors
adding to white (blue + yellow, etc.). What holds on a blue-yellow axis, also holds
for all other axes of the full circle of opponent colors centered to white. With both
ends of the spectrum brought together in a purple light and the middle part of the
spectrum concentrated on a green light, shadow hues not present in the physical
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Figure 6 Two lights (B1, B2) in a twilight adding to an equi-energy white, physically
balanced light (B1 + B2). A white light can be divided into two lights in many ways.
When horizontally divided into two white lights, the two shadows (S1, S2) will be gray.
When divided into two colored lights or vertically divided, the shadows reciprocally show
opponent colors. In Goethe’s experiment, the more bluish moonlight (B1) and the more
yellowish candlelight (B2) show shadows with opponent colors reciprocally.

spectrum are seen in opponent color pairs (purple + green). Goethe seems to have
been right when he stated that the linear spectrum in physics in human color vision
is transformed into a color circle of opponent colors adding to white. The same rule
holds if, instead of two lights, three colored lights adding to a white—or two pairs
of lights with opponent colors—are chosen to form a white illumination. They all
produce shadows of opponent colors.

Two intimately linked mathematical operations describe the transformations of
the data into the observable results. The calculation is shown in Table 3 for data
similar to Goethe’s experiment with blue-yellow shadows, but is valuable for all
other twilights adding to an equi-energy spectrum, as shown with more details in
Ref. [12]. The operations are:

(1) Transform all spectral intensity data of the lights B1, B2, and (B1 + B2)
into RGB space by multiplying the spectral intensities of the lights with the
three Gaussian curves of spectral brightness sensitivities (SBV) of human
color vision in Fig. 1. As a result the areae illuminated by (B1 + B2)—
the global information—in RGB space leads to a white (33% for R, G,
and B), B1 to a local blue (61% B, 26% G, 13% R), B2 to a local yellow
(0% B, 43% G, 57% R).

(2) Relate local information B1, B2 onto global information (B1 + B2) in
RGB space. The results of this optical cross-correlation determine the hues
of the colored shadows. Shadow S1 is a blue (+27% B, –7% G, –20% R),
S2 a yellow (–34% B, +10% G, +24% R).
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Table 3 Calculation of the blue (S1) and the yellow (S2) shadow for a blue (B1) and
a yellow light (B2) adding to an equi-energy white light (B1 + B2). Example with ver-
tical division of B1 and B2 at 520 nm (arbitrary intensity units). Multiplication of B1,
B2, and (B1 + B2) with the Gaussians from Fig. 1 centered to 559 nmR, 537 nmG
and 447 nmB (columns 5–7) leads to the transformations into RGB space (columns
9–11): B1 + B2 = white = 33%-RGB balance; B1 = blue (61% B, 26% G, 13% R),
B2 = yellow-red (0% B, 43% G, 57% R). Cross-correlation of local data to global data in
RGB space leads to a blue shadow S1 (+27% B, –7% G, –20% R) and to a yellow-red
shadow S2 (–34%, +10% G, +24% R). The same holds—with less saturation of the
opponent colors of the shadows—for all other possible divisions of the equi-energy white
light into a blue and a yellow light.

1 2 3 4 5 6 7 8 9 10 11

Wave- B1 B2 B1 + B2 B G R B G R
length
(nm)

380 450 450 37 – – B1 + B2 34% 33% 33%
400 450 450 264 1 – White
420 450 450 950 9 2
440 450 450 1712 40 10
460 450 450 1543 138 43 B1 61% 26% 13%
480 450 450 696 357 138 - - - - - - - - - - - - - - - - - - - -
500 450 450 157 698 344 S1 +27% –7% –20%
520 450 450 18 1025 657 Blue
540 450 450 1 1133 965
560 450 450 941 1087 B2 0% 43% 57%
580 450 450 588 940 - - - - - - - - - - - - - - - - - - - -
600 450 450 277 624 S2 –34% +10% +24%
620 450 450 98 318 Yellow
640 450 450 26 124
660 450 450 5 37
680 450 450 1 9

10.3.2 Physically unbalanced light optically calculated vs. physically

real

When a blue (B1) and a white light (B2) are combined in a twilight (Table 4),
transformation of (B1 + B2) into RGB space leads to a bluish-white (49% B,
28% G, 23% R) for the global information, transformation of B1 to a local blue
(60% B, 24% G, 16% R) and of B2 to a local white (33% for B, G, and R). With
a white light B2—the only light illuminating the shadow area S2—this shadow
“logically” should be white, but it is not. Transformation into RGB space alone is
not the only logic in the transformation rules. When we now apply the second rule,
the cross-correlation of local onto global information, shadow S1 becomes blue
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Table 4 Calculation of the colored shadows S1, S2 for a blue (B1) and a white light (B2)
adding to a physically unbalanced bluish light (B1 + B2). Multiplication of B1, B2, and
(B1 + B2) with the Gaussians from Fig. 1 centered to 559 nmR, 537 nmG and 447 nmB
(columns 5–7) leads to the transformations into RGB space (columns 9–11): B1 + B2 =
blue (49% B, 28% G, 23% R); B1 = blue-violet (60% B, 24% G, 16% R), B2 = white
(33%-RGB balance). Cross-correlation of local data to global data in RGB space leads to
a blue shadow S1 (+11% B, –4% G, –7% R) and to a yellow-red shadow S2 (–15% B,
+5% G, +10% R), where, without the cross-correlating, a white S2 should be seen. At
S2 the human eye sees what it has optically calculated.

1 2 3 4 5 6 7 8 9 10 11

Wave Blue White B1 + B2 B G R B G R
length light light
(nm) B1 B2

380 630 240 870 37 – – B1 + B2 49% 28% 23%
400 630 240 870 264 1 – Blue
420 670 240 910 950 9 2
440 570 240 810 1712 40 10 B1 60% 24% 16%
460 640 240 880 1543 138 43 - - - - - - - - - - - - - - - - - - - -
480 510 240 750 696 357 138 S1 +11% –4% –7%
500 380 240 620 157 698 344 Blue
520 260 240 500 18 1025 657
540 220 240 460 1 1133 965 B2 34% 33% 33%
560 140 240 380 941 1087 - - - - - - - - - - - - - - - - - - - -
580 80 240 320 588 940 S2 –15% +5% +10%
600 60 240 300 277 624 Yellow
620 40 240 280 98 318
640 240 240 26 124
660 240 240 5 37
680 240 240 1 9
700 240 240 2

(+11% B, –4% G, –7% R) and shadow S2 becomes yellow (–15% B, +5% G,
+10% R), the opponent color of blue. The same rules hold for all other combina-
tions of colored lights with a white light. The more intense the colored light is, the
more intense and saturated the opponent color is seen at shadow S2. It is now that
our eyes “do not see what is physically real at the shadow S2 area, but what they
have optically calculated.” This psychological fact is not an optical illusion, but the
result of an optical calculation. Could it be the result of a photochemical instead of
an optical calculation? It is optical, because absorption of local information in an
image plane alone—as stated by the camera model of the eye—cannot explain the
psychological facts, which per se are relations [3].The Gaussian curves of spectral
brightness sensitivities in Table 1 therefore inevitably represent diffractive optical
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RGB transmission curves of the retinal 3D grating [4], which at mean sunlight are
identical with the absorption characteristics of the photopigments in color vision.

10.3.3 Experimental setup to demonstrate ordinary and

paradoxically colored shadows

The main aspects of the phenomenon of colored shadows analyzed in the text have
been shown with a simple demonstrator on the blue-yellow and purple-green op-
ponent color axes. What holds for the blue-yellow and purple-green axes also holds
for all other opponent color pairs in the color circle.

A single white light source in a box through two optical fibers divides the in-
tensities into two equal parts [Fig. 7(a)], representing twilight with two white light
spots B1 and B2 on the whitish screen. The two white lights B1 and B2 by su-
perposition of their spots add to (B1 + B2) white [Fig. 7(b)]. The introduction
of a shadow casting stick shows two equally gray shadows S1 and S2 [Fig. 7(c)].
In Figs. 7(d) and 7(e), both optical fibers are equipped with opponent color filters
adding to white: in Fig. 7(d) a violet-blue light (B1) and a yellow (B2) light in
the twilight show a violet-blue (S2) and a yellow ordinary colored shadow (S1). In
Fig. 7(e), a green (B1) and a purple (B2) light in the twilight (B2 adds the vio-
let and the red parts of the white spectrum) show a green (S2) and a purple (S1)
ordinary colored shadow.

The paradoxically colored shadows S2 are shown in Figs. 7(f)–(i). The inserted
graphics illustrate the opponents of the colored shadows S1 and S2. Only one
optical fiber (B2—shown on the left) has a color filter, the other fiber (B1—on
the right) always projects white light. Shadow S1 regularly shows the hue of the
colored light (B2), shadow S2, instead of showing a white or a gray as could be
expected from B1, always shows the opponent hue of the color at B2, manifesting
the paradoxical colored shadows.

The colors of the shadows S2 can only be photographed when a white balance
system is operating in the camera. A spectral photometer will always register a
white spectrum at the S2 shadow area.

10.3.4 Unbalanced light rebalanced by adaptation to the colored

illumination

Adaptive chromatic grating-optical resonances with “balanced” or “unbalanced”
spectral intensity distributions are described by the resonant von Laue equation (Ta-
ble 1), where phase velocity Vp = nνλ, as the crystal optical resonance factor (Ta-
ble 2 and Ref. [5]) becomes relevant (n = refractive index). The grating constants
of the retinal 3D grating become tuned or “transformed” to a specific λmax of
the 111R-DO in the visible octave of the spectrum, the fundamental resonant
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Figure 7 Experimental setup demonstrating ordinary and paradoxically colored shad-
ows. (a) Twilight represented by two white light spots (B1 and B2) on a white screen.
(b) Superposition of white spots add to a white (B1 + B2). (c) Shadow casting stick
shows two equally gray shadows (S1 and S2). (d) A violet-blue light (B1) and a yellow
light (B2) show ordinary violet-blue and yellow shadows (S1 and S2). (e) Green (B1) and
purple (B2) light show ordinary green (S2) and purple (S1) shadow. (f)–(i) Paradoxically
colored shadows are represented by S2. One optical fiber projects color while the other
projects white light. S1 shows the line of the colored light, S2 shows the opponent here of
the color at B1, manifesting paradoxical colored shadows. The inserted graphics illustrate
the opponents of S1 and S2.
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wavelength in the RGB-triplet. Soon after birth, but only when adaptation to
variable light intensities by the appropriate training of pupil reflexes has at first
been learned, chromatic adaptation of the eye is trained and the DO-triplet—like
a comb-filter—learns to shift along the unbalanced global spectrum (B1 + B2) up
to a position where a good new psychological RGB balance—a white sensation—
is reached. In an adaptive instrument of sight this optical (tri)chromatic resonance
mechanism helps to stabilize psychological data in color vision. The rule for chro-
matic resonance adaptation is: at diffuse scatter of an unbalanced spectrum (B1 +
B2)—the global information—in aperture space, the 111R-DO in the retinal 3D
grating shifts the RGB-triplet toward a new white norm in RGB space to recali-
brate and renormalize color space (Table 5).

Table 5 Calculation of the colored shadow S2 for a blue (B1), and a white light (B2),
adding to a physically unbalanced blue light (B1 + B2) as in Table 4 (column 4), but
with progressive adaptation to the dominant blue component B1 in (B1 + B2). With
the Gaussians from Fig. 1 at first centered to 559 nmR, (B1 + B2) = blue (49% B,
28% G, 23% R) in RGB space, B2 = white (33%-RGB balance) and shadow S2 =
yellow (–15% B, +5% G, +10% R) as before (Table 4, columns 9–11). With the
Gaussians progressively shifting toward 499 nmR, (B1 + B2) in RGB space more
and more approaches a new white norm (reaching an optimum at about 499 nm =
33% B, 36% G, 31% R) and B2 drifts toward a yellowish white (finally at 499 nm =
28% B, 36% G, 36% R = yellow), S2 progressively loses its yellow color and finally
becomes a highly unsaturated whitish yellow (at 499 nm = –5% B, +0% G, +5% R).
This bleaching out of the yellow hue of S2 toward a highly unsaturated whitish yellow
experimentally is observed, when adaptation to the isolated B1 is reached and the white
light B2 suddenly becomes reintroduced to form the twilight.

Adaptation to B G R

559 nmR B1 + B2 49% 28% 23% Blue
B2 34% 33% 33% White
S2 –15% +5% +10% Yellow

539 nmR B1 + B2 46% 30% 25% Blue
B2 33% 33% 33% White
S2 –13% +3% +8% Yellow

519 nmR B1 + B2 36% 34% 29% Bluish-White
B2 32% 34% 34% White
S2 –4% +0% +5% Whitish-Yellow

499 nmR B1 + B2 33% 36% 31% White
B2 28% 36% 36% Yellowish-White
S2 –5% +0% +5% Whitish-Yellow
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When the sun at early morning hours radiates more in the blue part of the spec-
trum, and in the evening more in the red parts, adaptation simply follows the re-
spective direction. When (B1 + B2) suddenly changes from an equi-energy white
into a colored (blue + white) light (column 4 in Table 4), the three Gaussians cen-
tered at first to 559 nmR, 537 nmG,447 nmB will progressively shift to 499 nmR,
477 nmG, 387 nmB and reach a new white norm in RGB space. When (B1 + B2)
then splits into a twilight with B1 (blue) largely dominating over B2 (white) in the
global light, so that adaptation can be maintained at the 499 nmR-resonance state,
the critical shadow S2 will not show a saturated yellow hue, but a highly unsatu-
rated whitish yellow. The same is true for all other opponent colors. At a perfect
resonant adaptation the system is driven back to the situation, where a white light
can, by a horizontal line, be divided into two “white” lights and where both shad-
ows in the twilight become gray again (Fig. 6). At perfect adaptation, color space
is recentered to a new white norm and the physically unbalanced state is com-
pensated by a psychological rebalancing, guaranteeing invariants in color vision
under variable illuminants and thereby, as shown in Ref. [9], allowing relatively
good color constancy. Again it becomes evident that the three Gaussian curves in
Table 1 not only reflect photochemical characteristics adapted to perpendicularly
incident equi-energy white light, but also spectral transmission curves of a small
number of diffractive layers in the retinal multilayer 3D grating [4]. Only a post-
natal training of color vision under unbalanced spectra differentiates the resonant
diffractive-optical adaptation mechanism. The initial trichromatic spectral tuning
of the photo-pigments in Fig. 1 seems to be programmed by optical diffraction of
perpendicularly incident mean sunlight as the ordinary global illumination early
after birth. But it is the training of adaptation that differentiates the grating-optical
resonance mechanism.

10.4 Conclusions

The analysis of the phenomenon of colored shadows, typically illustrated on the
most critical shadow S2 at the blue-yellow axis, reveals the diffractive-optical spec-
tral transformations and cross-correlations in human color vision, representing
the most elementary psychophysical links between variable objective and adapt-
able subjective reciprocal worlds. The colored shadow S2 reaches fully saturated
chroma when the colored lights in a twilight add to a balanced white; the hue
of S2 desaturates when the lights add to an unbalanced illumination; S2 finally
adopts a more and more unsaturated whitish tint when chromatic adaptation to the
colored illuminant is reached. Color can be considered as an interference-optical
construction, an optical calculation by the resonant diffractive-optical hardware of
the human eye, a psychological fact reciprocally related to physical parameters in
the outside visible world.
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With the diffractive-optical hardware of the human eye, what holds for spec-
tral transformations and brings the Goethe-Newton controversy [7] to an end by
introducing modern optics, also holds for the full range of 4D spatio-temporal
transformations in image preprocessing. Only the final products of the diffractive-
optical correlator calculations are available to photoreceptors for absorption. This
is the price won by putting back absorption of photons behind diffractive/wave-
interference-optical image preprocessing in optics. It makes the diffractive-optical
illuminant-adaptive hardware of the human eye more intelligent, opening the door
to invariants in an ever-changing world through optically resonant adaptive psy-
chological rebalancing of unbalanced states in physics. It also makes human vision
more risky by opening the door to constructive interpretation of reality, to illusions
and hallucinations, pure psychological facts.

Emil Wolf summarized the main results of “Von Laue’s equations and scat-
tering from finite distances” at the Rochester Workshop in 1993: “I showed that
much information about diffracting and scattering objects can be determined from
measurements at finite distances from the object, without the use of any optical
system. This follows from the main result that underlies the theory of diffraction
tomography; namely, that the three-dimensional Fourier components of a scatter-
ing potential are mapped, in a rather remarkable and relatively simple manner,
onto the two-dimensional Fourier components of the scattered field in arbitrary
cross sections of the field. I also showed that if the object is periodic, the von Laue
equations clearly manifest themselves in the two-dimensional mapping of the ob-
ject. All this suggests that diffraction tomography, together with holography, might
offer a new technique for the study of the human visual system.”

This work has been supported by the German Government Research Pro-
gram [2].
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My Encounters with Emil and Marlies Wolf

I first met Emil and Marlies Wolf at the OSA meeting in Albuquerque (Sep-
tember 1992), where I was an assistant to Emil’s traditional workshop on “Mod-
ern Coherence Theory.” After the course, together we made a private excursion
to a nearby mountain via a cable railway. We spent a few hours passionately dis-
cussing historical discoveries and highlights in x-ray optics, in tomography and
holography. This was an immediate start into the heart of our main topic for the
years to come, the potential role played by the von Laue Equations in human vi-
sion.
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Emil and Marlies Wolf and Norbert Lauinger in Albuquerque, NM, 1992. (Courtesy of
N. Lauinger, copyright 2004.)

In 1993, Prof. Wolf invited me, together with two of my collaborators Dr.
M. Carbon, Jochen Schwab, to a “Workshop on Physical Optics and Human
Vision” at the University of Rochester (June 21 – June 22, 1993). At this event we
were not only fascinated by the quality of the other speakers, but also by the charm-
ing ambiance of Emil’s and Marlies’s home and garden, and the very friendly
atmosphere between the Wolf ’s and their students and disciples.

Later on we met at many congresses (ICO in Budapest, 1993; OSA Confer-
ence in Toronto, 1993; OSA at Rochester, 1996; OSA at Long Beach, 1997; EOS
in Germany, 2003; SPIE at San Diego in 2003), and, in short intervals, I had the
great pleasure to meet Emil and Marlies at their home in Rochester in 1994, 1995,
and 2002. In 1995, I welcomed Emil and Marlies to the newly founded company
Corrsys and at my home in Wetzlar, Germany that has a rich history of pioneers in
optics (Berek, Barnak, Bergmann, and others).

During all these encounters the topic of the von Laue’s Equations was the un-
broken thread encouraging our minds, and Prof. Wolf always excelled in precious
knowledge of books and publications hidden in pre-Internet times and sold only
in antique bookshops.

I have never met a man like Emil Wolf, who continually encouraged other
scientists and I have always forgotten to express my thanks to him. This time, I
would like to thank him for all he has done for my group of colleagues and for me.
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A garden-party at Rochester with Emil and Marlies Wolf, Margarita Carbon, and Norbert
Lauinger. (Courtesy of N. Lauinger, copyright 2004.)

Emil Wolf and Norbert Lauinger at Corrsys, Wetzlar, Germany. (Courtesy of
N. Lauinger, copyright 2004.)
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CHAPTER 11

THE WOLF EFFECT IN ROUGH

SURFACE SCATTERING

Zu-Han Gu, Tamara A. Leskova, Alexei A. Maradudin,

and Mikael Ciftan

11.1 Introduction

The literature dealing with theoretical optics contains so many effects associated
with the name Wolf that the selection of one or another of them to address in a
paper written in honor of Prof. Emil Wolf is difficult. We have finally chosen to
study changes in the spectrum of light due to its scattering from a randomly rough
surface, an investigation that has its origins in work done by Prof. Wolf more than
15 years ago.

In the work that prompted our study, Prof. Wolf considered radiation from
a three-dimensional quasi-homogeneous source, and showed that if the degree of
spectral coherence of the source is appropriately chosen, the spectrum of the emit-
ted radiation can be redshifted or blueshifted with respect to that of the source,
even when the source is at rest with respect to the observer, and the radiation prop-
agates in free space [1–4]. Unlike Doppler shifts, these correlation-induced shifts
are frequency independent, and are restricted in their magnitudes to values that are
smaller than the widths of the spectral lines.

In the scattering of polychromatic light from a static random medium, the dif-
ferent frequency components of the incident light, which are scattered in any par-
ticular direction, will be scattered with different strengths. Consequently, the spec-
trum of the scattered light will differ from that of the incident light, even though
the different frequency components are uncorrelated. The possibility of generating
a spectral redistribution by scattering is analogous to the possibility of generating
a spectral redistribution in light emitted by a source caused by correlations in the
fluctuations of the source. The only difference is that in scattering one is deal-
ing with secondary sources, namely with the polarization induced in the scattering
medium by the incident field. The induced polarization, in general, is correlated
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over finite distances of the scattering medium, and thus imitates correlations in
primary sources. This analogy between scattering and radiation prompted several
theoretical investigations of spectral redistributions of light scattered by volume
random media [5–7]. These investigations were based on the first Born approxi-
mation, a single-scattering approximation, and were therefore applicable to media
with a very low density of scatterers. The first calculations of spectral changes of
light scattered by volume random media in which multiple-scattering effects are
important, were carried out by Lagendijk [8,9]. He pointed out that the enhanced
backscattering of light from a strongly scattering disordered medium, which is
due to the coherent interference between multiply-scattered optical paths and their
reciprocal partners, can be regarded as due to the reemission of light from an ex-
tended source in the random medium that possesses just the type of source correla-
tion needed to produce a Wolf redshift. The magnitudes of the redshifts calculated
by Lagendijk for scattering angles in the vicinity of the backscattering direction,
however, were very small. Lagendijk’s work was later followed by other studies
of spectral changes in the scattering of light from volume-disordered systems that
took multiple scattering into account [10,11].

Our own interest in the scattering of light from randomly rough surfaces led to
several theoretical [12,13] and experimental [14,15] studies of the change in the
spectrum of polychromatic light scattered from such surfaces. This change can be
regarded as due to the emission of light by a secondary source, namely the random
surface, whose profile function possesses the type of source correlation that leads
to the spectrum of the scattered light in the far zone being different from that of
the light at the secondary source.

In this chapter we theoretically and experimentally address the spectral changes
occuring in the scattering of light from a system that consists of a dielectric film de-
posited on the planar surface of a metallic substrate, when the illuminated surface
of the film is randomly rough. It has been known for some time that coherent light
scattered from a slightly rough two-dimensional random surface of a dielectric film
deposited on the planar surface of a reflecting substrate consists of speckle spots
that arrange themselves into concentric interference rings that are centered at the
normal to the mean surface. The angular positions of these rings (intensity max-
ima) are independent of the angle of incidence, but depend strongly on the wave-
length of the incident light and the mean thickness of the film. These rings have
been named Selényi rings [16]. If the roughness of the dielectric surface is strong,
the angular positions of these rings depend on the angle of incidence and on the
wavelength of the incident light and the mean thickness of the film. The ring cor-
responding to the zero order of interference passes through both the specular and
retroreflection directions. These rings have been named Quételet rings [17,18].
The dielectric films in the scattering systems that will be studied experimentally
in this paper are sufficiently rough and sufficiently thick to give rise to Quételet
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rings. Those that will be studied theoretically are either weakly rough and give rise
to Selényi rings, or are strongly rough and give rise to Quételet rings. Our interest
in such systems derives from the fact that in order to obtain changes in the spec-
trum of light scattered from a randomly rough surface that are large enough to be
observed experimentally, the spectrum of the scattered light should be measured
at a scattering angle that is in the near vicinity of some feature in the scattering
pattern whose angular position depends strongly on the frequency of the incident
light [12,13]. Selényi and Quételet rings are just such features, and it is expected
that large changes in the spectrum of the light scattered at the angle at which one of
these rings occurs will be observed. This expectation is borne out by our theoretical
and experimental results.

The outline of this paper is as follows. In Sect. 11.2 we theoretically examine
the changes in the spectrum of light scattered from a dielectric film deposited on
the planar surface of a metallic substrate, in the case where the illuminated surface
of the film is a one-dimensional randomly rough surface, and the scattering angle
is close to the angular position of one of the Selényi or Quételet fringes produced
by the scattering system, depending on the roughness of the film. In Sect. 11.3
we present experimental results for the changes in the spectrum of the scattered
light in the case of the in-plane copolarized scattering of s-polarized light from a
dielectric film deposited on the planar surface of a metal substrate, when the illu-
minated surface of the film is a two-dimensional strongly rough random surface,
and the scattering angle is close to the angular position of one of the Quételet rings
produced by the scattering system. A brief discussion of the results obtained, in
Sect. 11.4, concludes this paper.

11.2 Theoretical Study of Changes in the Spectrum

of Light Scattered from a Rough Dielectric Film

on a Metallic Substrate

In this section we theoretically study the scattering of s-polarized light from a di-
electric film deposited on the planar surface of a metallic substrate. The illuminated
surface of the film is a one-dimensional randomly rough surface, and the plane
of incidence is perpendicular to the generators of the surface. The analogs of the
Selényi and Quételet rings in this case are called Selényi and Quételet fringes [19].
What will be calculated is the spectrum of the scattered light at scattering angles
at which these fringes occur. The results of this study should be qualitatively sim-
ilar to those obtained in the experiments on the in-plane copolarized scattering of
s-polarized light from a two-dimensional randomly rough surface described in the
following section.

Thus, the system we study in this section consists of vacuum in the region
x3 > ζ(x1), a dielectric medium characterized by a dielectric constant ε in the
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region –D < x3 < ζ(x1), and a metal characterized by an isotropic, complex,
frequency-dependent dielectric function ε(ω) in the region x3 < –D. Since the
sample in the experimental study described in Sect. 11.3 is a smooth aluminum
plate that was coated with a dielectric film whose upper surface was weakly rough,
and whose thickness was slowly varying around the mean thickness, we assume
that the surface profile function ζ(x1) is a sum of two profiles

ζ(x1) = s1(x1) + s2(x1), (1)

where both s1(x1) and s2(x1) are single-valued functions of x1 that are differen-
tiable as many times as is necessary, and constitute zero-mean, stationary, uncorre-
lated, Gaussian random processes defined by

〈si(x1)sj(x′
1)〉 = δijδ

2
i Wi(|x1 – x′

1|), i, j = 1, 2, (2)

where δij is the Kronecker symbol. The angle brackets in Eq. (2) denote an
average over the ensemble of realizations of the surface profile function, and
δi = 〈s2i (x1)〉1/2 is the rms height of the surface. The surface height autocorre-
lation functions Wi(|x1|) are assumed to have the Gaussian form

Wi(x1) = exp(–x2
1/a2

i ), (3)

where the characteristic lengths ai are the transverse correlation lengths of the sur-
face roughness. The power spectrum of the surface roughness associated with each
component of the surface profile function is defined by (i = 1, 2)

gi(|Q|) =
∫ ∞

–∞
dx1Wi(|x1|)exp(–iQx1) (4a)

=
√

πaiexp(–a2
i Q2/4). (4b)

This system is illuminated from the vacuum side by an s-polarized electro-
magnetic field whose plane of incidence is the x1x3 plane. The single nonzero
component of the electric vector of the incident field is written as a superposi-
tion of incident monochromatic components weighted by a random function of
frequency F(ω),

E2(x1, x3; t)inc =
∫ ∞

–∞
dω
2π

F(ω)exp[ikx1 – iα0(k,ω)x3 – iωt], (5)

where α0(k,ω) = [(ω/c)2 – k2]1/2, with Reα0(k,ω) > 0, Imα0(k,ω) > 0. The
wavenumber k is related to the angle of incidence θ0, measured counterclockwise
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from the positive x3 axis, by k = (ω/c) sinθ0. The random function F(ω) pos-
sesses the properties

〈F(ω)F*(ω′)〉F = 2πδ(ω – ω′)S0(ω), (6a)

〈F(ω)F(ω′)〉F = 0, (6b)

where the angle brackets 〈· · ·〉F denote an average over the ensemble of realizations
of the field. The spectral density of the incident light S0(ω) is normalized to unity,

∫ ∞

–∞
dωS0(ω) = 1, (7)

and will be described by a particular form characteristic to the source used in our
experiments.

The single nonzero component of the electric vector of the scattered field in the
region x3 > ζ(x1)max is

E2(x1, x3; t) =
∫ ∞

–∞
dω
2π

F(ω)
∫ ∞

–∞
dq
2π

Rω(q|k)exp[iqx + iα0(q,ω)x3 – iωt],

(8)
where Rω(q|k) is the amplitude for the scattering of an incident plane wave of
frequency ω, exp[ikx1 – α0(k,ω)x3 – iωt], whose wave vector has a projection k
on the x1 axis, into a scattered plane wave of frequency ω, whose wave vector has
a projection q on the x1 axis.

The fraction of the total time-averaged incident flux that is scattered into
the angular interval dθs about the scattering angle θs, measured clockwise
from the x3 axis, and into the frequency interval (ω,ω + dω), is given by
〈〈∂2P/∂ω∂θs〉〉dθsdω, where

〈〈 ∂2P
∂ω∂θs

〉〉
= S0(ω)

〈∂Pω

∂θs

〉
, (9)

and the double brackets 〈〈· · ·〉〉 denote an average over both the ensemble of real-
izations of the surface profile and the ensemble of realizations of the incident field.
The function 〈∂Pω/∂θs〉, given by

〈∂Pω

∂θs

〉
=

1
L

ω

2πc
cos2θs

cosθ0
〈|Rω(q|k)|2〉, (10)

is the mean differential reflection coefficient. In Eq. (10), L is the length of the
x1 axis covered by the random surface, k = (ω/c)sinθ0, and q = (ω/c)sinθs. As
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our interest is in the spectral distribution of light scattered at an angle other than
that of the specular direction, we base our calculations of the spectral distribution
on the contribution to the mean differential reflection from the light that has been
scattered diffusely, namely

〈∂Pω

∂θs

〉
diff

=
1
L

ω

2πc
cos2θs

cosθ0

[〈|Rω(q|k)|2〉 – |〈Rω(q|k)〉|2]. (11)

Thus, Eq. (9) is replaced by

〈〈 ∂2P
∂ω∂θs

〉〉
diff

= S0(ω)
〈∂Pω

∂θs

〉
diff

. (12)

Equations (11) and (12) define the function that used as the spectral density of
light scattered in the direction defined by the scattering angle θs. The presence of
the second factor on the right-hand side of Eq. (12) [and of Eq. (9)] shows that the
spectrum of the scattered light differs from that of the incident light. We now turn
to the determination of the mean differential reflection coefficient 〈∂Pω/∂θs〉diff .

For the system considered in this paper, the scattering amplitude Rω(q|k) sat-
isfies a reduced Rayleigh equation, which has the form

∫ ∞

–∞
dp
2π

Mω(q|p)Rω(p|k) = –Nω(q|k), (13)

where

Mω(q|p) =
I(α1(q) – α0(p)|q – p)

α1(q) – α0(p)
– r1(q)

I(–(α1(q) + α0(p))|q – p)
α1(q) + α0(p)

, (14a)

Nω(q|k) =
I(α1(q) + α0(k)|q – k)

α1(q) + α0(k)
– r1(q)

I(–(α1(q) – α0(k))|q – k)
α1(q) – α0(k)

, (14b)

with

α1(q) =
[
ε
ω2

c2 – q2
]1/2

, Reα1(q) > 0, Imα1(q) > 0, (15a)

α(q) =
[
ε(ω)

ω2

c2 – q2
]1/2

, Reα(q) > 0, Imα(q) > 0, (15b)

while

r1(q) =
α1(q) – α(q)
α1(q) + α(q)

e2iα1(q)D (16)
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is the Fresnel reflection coefficient at the planar dielectric film-metal interface, and

I(γ|Q) =
∫ ∞

–∞
dx1e–iQx1e–iγζ(x1). (17)

We now introduce the Green’s function Gω(q|k) for the surface and guided
electromagnetic waves supported by the system with the rough vacuum-dielectric
film interface as the solution of the Dyson equation

Gω(q|k) = 2πδ(q – k)G0(k,ω) +
∫ ∞

–∞
dr
2π

Gω(q|r)Vω(r|k)G0(k,ω), (18)

where G0(k,ω) is a Green’s function for the surface and guided waves supported
by the system with planar surfaces

G0(k,ω) = i
1 + r1(k)

(α1(k) + α0(k)) – (α1(k) – α0(k))r1(k)
, (19)

and Vω(q|k) is the scattering potential due to the surface roughness.
We assume a solution of Eq. (13) of the form

Rω(q|k) = –2πδ(q – k) – 2iGω(q|k)α0(k). (20)

This form for Rω(q|k) is suggested by the fact that when Gω(q|k) is replaced by
2πδ(q – k)G0(q|k), i.e., in the case where the system has planar surfaces, Eq. (20)
yields the Fresnel reflection coefficient for the latter system.

By substituting Eq. (20) into Eq. (13), and then using Eq. (18) to eliminate
Gω(q|k) from the resulting equation, we obtain the following integral equation for
the scattering potential Vω(q|k) in terms of the Green’s function G0(q,ω):∫ ∞

–∞
dq
2π

[Nω(p|q) – Mω(p|q)]
V(q|k)
2iα0(q)

=
Nω(p|k) – Mω(p|k)[1 + 2iα0(k)G0(k,ω)]

2iα0(k)G0(k,ω)
. (21)

At this point we replace the function I(γ|Q) defined by Eq. (17) by

I(γ|Q) = 2πδ(Q) + J(γ|Q), (22)

where

J(γ|Q) =
∫ ∞

–∞
dx1exp(–iQx1)[exp(–iγζ(x1)) – 1]. (23)
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Then with the use of Eq. (19) we can rewrite Eq. (21) for the scattering potential
in the form

Vω(p|k) = V(0)
ω (p|k) +

∫ ∞

–∞
dq
2π

Kω(p|q)Vω(q|k), (24)

where

V(0)
ω (q|k) =

i(ε – 1)(ω2/c2)
1 + r1(q)

×
{[

J(α1(q) + α0(k)|q – k)
α1(q) + α0(k)

– r1(q)
J{–[α1(q) – α0(k)]|q – k}

α1(q) – α0(k)

]

× {[α1(k) + α0(k)] – [α1(k) – α0(k)]r1(k)}

–
[

J(α1(q) – α0(k)|q – k)
α1(q) – α0(k)

– r1(q)
J{–[α1(q) + α0(k)]|q – k}

α1(q) + α0(k)

]

× {[α1(k) – α0(k)] – [α1(k) + α0(k)]r1(k)}
}

1
1 + r1(k)

1
2α0(k)

,

(25)

and

Kω(q|p) =
(ε – 1)(ω2/c2)

1 + r1(q)

{[
J[α1(q) + α0(p)|q – p]

α1(q) + α0(p)
–

J[α1(q) – α0(p)|q – p]
α1(q) – α0(p)

]

– r1(q)
[

J[–(α1(q) – α0(p)]|q – p)
α1(q) – α0(p)

–
J[–(α1(q) + α0(p)]|q – p)

α1(q) + α0(p)

]}
1

2α0(p)
. (26)

Since we assumed that the surface is weakly rough in the sense that either the rms
height is small compared to the wavelength, or the rms slope is very small, we solve
Eq. (24) for the scattering potential iteratively. In order to have a clear physical
picture of the different contributions to the scattering potential we rearrange the
solution so that we can rewrite the expression for the scattering potential in the
following form, which is exact through terms of O(ζ2):

Vω(q|k) =
i(ε – 1)(ω2/c2)

1 + r1(q)

{
J[α1(q) + α1(k)|q – k]

α1(q) + α1(k)

– r1(q)
J[–(α1(q) + α1(k)]|q – k)

α1(q) + α1(k)
r1(k)
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+
J[α1(q) – α1(k)|q – k]

α1(q) – α1(k)
r1(k)

– r1(q)
J[–(α1(q) – α1(k)]|q – k)

α1(q) – α1(k)

}
1

1 + r1(k)
. (27)

The Green’s function for the rough film on the metal surface is then obtained
iteratively from Eq. (18) to second order in the scattering potential Vω(q|k)

Gω(q|k) = 2πδ(q – k)G0(q,ω) + G0(q,ω)Vω(q|k)G0(k,ω) + G0(q,ω)

×
∫ ∞

–∞
dp
2π

Vω(q|p)G0(p)Vω(p|k)G0(k,ω). (28)

The scattering amplitude Rω(q|k) can be then determined from Eq. (20), and the
mean differential reflection coefficient 〈∂Pω/∂θs)diff, given by Eq. (11), can be
calculated as a function of the frequency ω of the incident light and the angle of
scattering θs:

〈∂Pω

∂θs

〉
diff

=
1

2πL
ω3

c3 cosθs cosθ0|G0(q,ω)|2

×
[
〈Vω(q|k)V*

ω(q|k)〉 – 〈Vω(q|k)〉〈V*
ω(q|k)〉

+
〈∫ ∞

–∞
dp
2π

∫ ∞

–∞
dp′

2π
Vω(q|p)G0(p,ω)Vω(p|k)

× V*
ω(q|p′)G*

0(p′,ω)V*
ω(p′|k)

〉

–
〈∫ ∞

–∞
dp
2π

Vω(q|p)G0(p,ω)Vω(p|k)
〉

×
〈∫ ∞

–∞
dp′

2π
V*

ω(q|p′)G*
0(p′,ω)V*

ω(p′|k)
〉

+ 2Re
〈
V*

ω(q|k)
∫ ∞

–∞
dp
2π

Vω(q|p)G0(p,ω)Vω(p|k)
〉

– 2Re〈V*
ω(q|k)〉

〈∫ ∞

–∞
dp
2π

Vω(q|p)G0(p,ω)Vω(p|k)
〉]

× |G0(k,ω)|2. (29)

When calculating the averages appearing in Eq. (29), it is convenient to express
them through cumulant averages [25]. Then Eq. (29) will contain the cumulant
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averages of products of two, three, and four scattering potentials. However, the cu-
mulant averages of the products of more than two potentials can be neglected [26]
in view of the effective weakness of both surface profile functions: s1(x1) due to its
small rms height, and s2(x1) due to its long transverse correlation length. Thus,
Eq. (29) takes the form〈∂Pω

∂θs

〉
diff

=
1

2πL
ω3

c3 cosθs cosθ0|G0(q,ω)|2
[
〈Vω(q|k)V*

ω(q|k)〉c

+
∫ ∞

–∞
dp
2π

∫ ∞

–∞
dp′

2π
〈Vω(q|p)G0(p,ω)V*

ω(q|p′)〉c

× 〈Vω(p|k)G*
0(p′,ω)V*

ω(p′|k)〉c

+
∫ ∞

–∞
dp
2π

∫ ∞

–∞
dp′

2π
〈Vω(q|p)G0(p,ω)V*

ω(p′|k)〉c

× 〈Vω(p|k)G*
0(p′,ω)V*

ω(q|p′)〉c

+ 2Re

∫ ∞

–∞
dp
2π

〈V*
ω(q|k)Vω(q|p)〉cG0(p,ω)〈Vω(p|k)〉c

+ 2Re

∫ ∞

–∞
dp
2π

〈V*
ω(q|k)〈Vω(q|p)〉cG0(p,ω)Vω(p|k)〉c

]

× |G0(k,ω)|2. (30)

In calculating the averages 〈Vω(q|k)〉 and 〈Vω(q|k)V*
ω(q′|k′)〉c we utilize the

results that [26]

〈J(γ|Q)〉 = 2πδ(Q)
(

exp{–(δ2
1 + δ2

2
)
γ2/2} – 1

)
, (31a)

〈J(γ1|Q1)J(γ2|Q2)〉c = 2πδ(Q1 + Q2)exp
{

–
(
γ2

1 + γ2
2
)(

δ2
1 + δ2

2
)
/2
}

×
∫ ∞

–∞
duexp(–iQ1u)

(
exp

{
–γ1γ2

(
δ2

1W1(|u|))
+ δ2

2W2|u|
)}

– 1
)

, (31b)

so that the cumulant average of the product Vω(q|p)V*
ω(r|k), namely

〈Vω(q|p)V*
ω(r|k)〉c = 〈Vω(q|p)V*

ω(r|k)〉 – 〈Vω(q|p)〉〈V*
ω(r|k)〉, is found to be

〈Vω(q|p)V*
ω(r|k)〉c

= 2πδ(q – p – r + k)
(ε – 1)2(ω/c)4

[1 + r1(q)][1 + r1(p)][1 + r*
1(r)][1 + r*

1(k)]
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×
∞∑

n=1

1
n!

∫ ∞

–∞
due–i(q–p)u

[
δ2

1W1(|u|) + δ2
2W2(|u|)

]n

×
{

e–(δ2
1+δ2

2)[α1(q)+α1(p)]2/2[α1(q) + α1(p)]n–1[1 – (–1)nr1(q)r1(p)]

+ e–(δ2
1+δ2

2)[α1(q)–α1(p)]2/2[α1(q) – α1(p)]n–1[r1(p) – (–1)nr1(q)]
}

×
{

e–(δ2
1+δ2

2)[α1(r)+α1(k)]2/2[α1(r) + α1(k)]n–1[1 – (–1)nr1(r)r1(k)]

+ e–(δ2
1+δ2

2)[α1(r)–α1(k)]2/2[α1(r) – α1(k)]n–1[r1(k) – (–1)nr1(r)]
}*

.(32)

In the limit of a small slope roughness, when only single scattering processes sur-
vive, the differential reflection coefficient is well described by the contribution
〈|Vω(q|k)|2〉c in Eq. (30). However, as soon as one of the components of the sur-
face roughness contains high slopes (small transverse correlation length), the other
contributions in Eq. (30) become important. In particular, the one described by
the third term contains the enhanced backscattering effect. The appearance of the
interference fringes in the intensity of the light scattered diffusely is well described
by the contribution to 〈∂Pω/∂θs〉diff from only 〈|Vω(q|k)|2〉c:

〈∂Pω

∂θs

〉
diff

=
ω7

c7 cosθs cosθ0(ε – 1)2
∣∣∣∣ 1
α1(q) + α0(q) – [α1(q) – α0(q)]r1(q)

∣∣∣∣
2

×
∞∑

n=1

1
n!

∫ ∞

–∞
due–i(q–p)u

(
δ2

1W1(|u|) + δ2
2W2(|u|)

)n

× |e–(δ2
1+δ2

2)[α1(q)+α1(k)]2/2[α1(q) + α1(k)]n–1[1 – (–1)nr1(q)r1(k)]

+ e–(δ2
1+δ2

2)[α1(q)–α1(k)]2/2[α1(q) – α1(k)]n–1[r1(k) – (–1)nr1(q)]|2

×
∣∣∣∣ 1
α1(k) + α0(k) – [α1(k) – α0(k)]r1(k)

∣∣∣∣
2

. (33)

In the numerical calculations based on the results presented, it was assumed
that the dielectric constant of the film is ε = 3.648 + i0.0075, and the dielectric
function of the substrate is given by the Drude expression with the plasma fre-
quency of Al, ωp = 15.3 eV, and the electron collision time τ = 6 · 10–15 s. Color-
level plots of the logarithm of the contribution to the mean differential reflection
coefficient from the light scattered diffusely as a function of the angles of incidence
and scattering calculated in the case where the film thickness is D = 8.9 µm, the
wavelength of the incident light is λ = 632.8 nm are presented in Fig. 1.
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Figure 1 Color-level plots of the logarithm of the mean differential reflection coeffi-
cient of the scattered light calculated as a function of the angles of incidence and scat-
tering. (a) δ1 = 6 nm, a1 = 300 nm, δ2 = 0 (short scale roughness); (b) δ1 = 6 nm,
a1 = 300 nm, δ2 = 220 nm, a2 = 10 µm.

In the case illustrated in Fig. 1(a), the film surface is weakly rough, and
the dominant contribution to the mean differential reflection coefficient comes
from the first term of the sum in Eq. (33), which is governed by |[1 + r1(q)]
[1 + r1(k)]|2 because the exponential factors are sensibly equal to unity. Thus,
the dependence of the mean differential reflection coefficient on the angles of
scattering and incidence factorizes. This leads to a static fringe pattern (the
Selényi fringes) that is modulated when the angle of incidence is varied. The
positions of the maxima of the intensity are determined by the maxima of
|[1 + r1(q)][1 + r1(k)]|2. In the case of a highly reflective metallic substrate the
maxima occur when sinα1(q)D = 1 – α2

1(q)/(|ε(ω)|ω/c), or when sinα1(k)D =
1–α2

1(k)/(|ε(ω)|ω/c), while in the case of a perfectly conducting substrate (r(q) =
–exp{2iα1(q)D}) these conditions reduce to sinα1(q)D = 1 and sinα1(k)D = 1,
respectively. The maxima therefore occur at the angles of scattering and incidence
given by

θ
(m)
s,0 = sin–1

{
ε –

[ λ

2D

(
m +

1
2

)]2
}1/2

. (34)

When the surface is moderately rough, the dominant term in the mean differ-
ential reflection coefficient is governed by the factor

∣∣∣e–δ2
1+δ2

2[α1(q)+α1(k)]2/2[1+r1(q)r1(k)]+e–(δ2
1+δ2

2)[α1(q)–α1(k)]2/2[r1(k)+r1(q)]
∣∣∣2.
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In this case the fringe pattern (the Quételet fringes) is produced by the second term
in this sum, since e–δ2[α1(q)–α1(k)]2/2 � e–δ2[α1(q)+α1(k)]2/2. Thus, the positions of
the maxima of the interference fringes are determined by the maxima of the func-
tion |r1(k) + r1(q)|2 or, if the substrate is perfectly conducting, by the condition
cos2[α1(q) – α1(k)]D = 1, i.e., at the angles

θ(m)
s = sin–1

[
ε –

(
mλ

2D
+

√
ε – sin2θ0

)2]1/2

. (35)

In the approach taken in this paper, to model the scattering system used in the
experimental work described in the following section, we have assumed that the
surface roughness has two components. One of the components, s1(x1), has a small
rms height and a short correlation length, and only this component of the surface
roughness was taken into account in calculations whose results are presented in
Fig. 1(a). The second component of the surface roughness, s2(x1), is characterized
by a large rms height and a very large correlation length, so that the Rayleigh hy-
pothesis, on which our work is based, remains valid for s1(x1) + s2(x1). The fringe
pattern in this case is shown in Fig. 1(b). The fringes move as the angle of inci-
dence is varied, and there is always a maximum in the specular and retroreflection
directions.

In Fig. 2 we present a color-level plot of the logarithm of the contribution to the
mean differential reflection coefficient from the light scattered diffusely as a func-
tion of the angle of scattering and the wavelength of the incident light, calculated
in the case where the film thickness is D = 8.9 µm, δ1 = 6 nm, a1 = 300 nm,

Figure 2 Color-level plot of the logarithm of the mean differential reflection coefficient
of the scattered light calculated as a function of the wavelength and the angle of scattering.
The angle of incidence is θ0 = 40 deg. The parameters of the scattering system are the
same as in Fig. 1(b).
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δ2 = 220 nm, a2 = 10 µm, and the angle of incidence is θ0 = 40 deg. The
Quételet fringes seen in Fig. 2 are modulated as the wavelength is varied. It is
clearly seen, however, that for forward scattering, i.e., when the scattering angle
is in the vicinity of the specular direction, the maxima of the intensity oscillations
increase with a decrease of the wavelength, while they decrease with the decrease
of the wavelength for backward scattering, i.e., when the scattering angle is in the
vicinity of the retroreflection direction. The strong dependence of the mean dif-
ferential reflection coefficient on the wavelength of the incident light allows us to
expect a strong redistribution of the spectrum of the scattered light if the incident
light is polychromatic.

To show that this expectation is confirmed, we assume that the spectral den-
sity of the incident light S0(ω) has a Gaussian form with a central frequency
ω0 = 0.474 × 1015 s–1 (which corresponds to the maximum at λ = 632.8 nm)
and a half-width ∆ω = 0.01ω0,

S0(ω) =
1√

π∆ω
exp

[
–(ω – ω0)2/(∆ω)2]. (36)

In this case the spectral density of the scattered light can be calculated from
Eqs. (12) and (33). In Fig. 3 we present numerical results for the normalized
spectral density of the scattered light (presented as a function of the wavelength
rather than of the frequency) for the case where the light is incident at θ0 = 40 deg
and is scattered into directions around θs = 69 deg. To illustrate the effects of the
scattering on the spectral distribution of the incident light we present in Fig. 3(a)
the spectral density of the scattered light in the absence of any correlation-induced
spectral changes. The spectral density of the light scattered from the surface of
the dielectric film that is weakly rough and described by a single-scale roughness
[the case illustrated in Fig. 1(a)] is shown in Fig. 3(b), and that of the light scat-
tered from a surface described by a two-scale roughness [the case illustrated in
Fig. 1(b)] is shown in Fig. 3(c). It should be noted that the maximum of the
Selényi ring in the case illustrated in Figs. 1(a) and 3(b) at λ = 632.8 nm is at
θs = 68.8 deg, and the maximum of the Quételet ring in the case illustrated in
Figs. 1(b) and 3(c) at λ = 632.8 nm is at θs = 69 deg. The strong frequency de-
pendence of the mean differential reflection coefficient results not only in a shift,
but also in a strong redistribution of the spectral density of the scattered light, as
can easily be seen in Fig. 3.

In Fig. 4 we present the analogous results for the scattering into backward
directions around θs = –43 deg. The maximum of the Selényi ring in the case
illustrated in Figs. 1(a) and 4(b) at λ = 632.8 nm is at θs = –39.8 deg, and the
maximum of the Quételet ring in the case illustrated in Figs. 1(b) and 4(c) at
λ = 632.8 nm is at θs = –39 deg. The shift of the position of the maximum from
the retroreflection direction is due to the fact that the Quételet rings are on the tail
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of the strong peak in the contribution to the mean differential reflection coefficient
from the light scattered diffusely into the directions around the specular direction
that arises due to the scattering by the long-scale surface roughness and mimics the
power spectrum of this roughness, g2(|q – k|).

As is seen from the plots in Figs. 3 and 4, the spectral density of the scat-
tered light changes considerably in scattering from both weakly rough and strongly
rough surfaces that give rise to Selényi fringes and to Quételet fringes, respectively.
The overall shifts of the maximum, however, have different signs. In the case of the
Selényi rings, the scattering is stronger for wavelengths larger than the wavelength
λ0, while in the case of the Quételet rings it is stronger for wavelengths smaller
than λ0.

Figure 3 The spectral density of the light scattered into directions around θs = 69 deg;
(a) in the absence of the roughness-induced correlations, (b) a weakly rough surface with
a single-scale roughness, and (c) a strongly rough surface with a two-scale roughness. The
angle of incidence θ0 = 40 deg. The roughness parameters are the same as in Figs. 1(a)
and 1(b), respectively.
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Figure 4 The spectral density of the light scattered into directions around θs = –43 deg;
(a) in the absence of the roughness-induced correlations, (b) a weakly rough surface with
a single-scale roughness, and (c) a strongly rough surface with a two-scale roughness. The
angle of incidence θ0 = 40 deg. The roughness parameters are the same as in Figs. 1(a)
and 1(b), respectively.

11.3 Experimental Studies of Spectral Changes

in the Scattering of Light from a Rough Dielectric Film

on a Metallic Substrate

In this section we describe measurements of the in-plane copolarized scattering of
s-polarized light from a dielectric film deposited on the planar surface of a metallic
substrate, when the illuminated surface of the film is a two-dimensional randomly
rough surface. The measured differential intensity of the scattered light displays a
set of bright rings, whose positions depend on the angle of incidence, and there is
always an interference ring present in the specular and backscattering directions.
Thus, the scattering pattern displays the Quételet rings. The spectrum of the scat-
tered light is measured at scattering angles that are very close to the angular posi-
tions of two of the Quételet rings present in the scattering pattern, and is found to
differ from the spectrum of the incident light.
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In our experiments, as a sample we used a smooth aluminum plate that was
coated with a teflon film for high performance and protection. The upper surface
of the dielectric film is weakly rough, and its surface profile constitutes a good
approximation to a Gaussian random process with a Gaussian surface height au-
tocorrelation function defined by an rms height of the surface δ = 6 nm and a
transverse correlation length of the surface roughness a = 300 nm. The thickness
of the film is slowly varying around the mean thickness D ∼= 8.9 µm, and its re-
fractive index is almost frequency independent, n = 1.91 (the dielectric constant
ε = 3.648). Since the dielectric film is smooth, most of the energy goes into the
specular direction; thus, a sensitive photomultiplier is used.

A fully automated bidirectional reflectometer was used to measure the frac-
tion of incident light reflected by the sample into incremental angles over its field
of view. It uses illumination by combination of a 150-W xenon lamp, a 75-W
tungsten-halogen lamp, and a laser, and enables measurements to be taken for any
combination of angles of incidence and scattering over the entire plane, except for
a small angular range (about 0.5 deg away from the retroreflection direction) in
which the source and detector mirrors interfere. A laser beam passes through a po-
larizer and is interrupted by a chopper and a half-wavelength plate, which rotates
the polarization of the beam. Then it is directed toward the sample by a folded
beam system that collimates it into a parallel beam up to 25 mm in diameter. For
measurements, the beam size W is set to W = 10 mm. The sample is viewed by
a movable off-axis paraboloid that projects the light reflected by the sample onto
the detector via a polarizer and a folding mirror. Four different polarization com-
binations of input and receiving beams are recorded. The signal is recorded and
digitized at each angular setting of interest throughout the angular range by an
ITHACO lock-in amplifier, and the data are stored in the memory of a personal
computer. The sample and the receiving telescope arm are separately mounted on
two rotational stages run by two independent stepper motors that are controlled by
a PC via a two-axis driver.

In Fig. 5 the mean differential intensity of the in-plane copolarized scat-
tered light is plotted as a function of the angle of scattering for the case where
s-polarized light of wavelength λ = 632.8 nm is incident on the film surface at
two angles of incidence: (a) θ0 = 0 deg and (b) θ0 = 40 deg. The differen-
tial intensity of the scattered light displays a set of bright rings, which are posi-
tioned at the scattering angles θs = 0 deg, θs

∼= ±21.5 deg, θs
∼= ±31.1 deg,

θs
∼= ±38.9 deg, θs

∼= ±46.3 deg, θs
∼= ±53.7 deg, and θs

∼= ±62 deg in the
case where θ0 = 0 deg, and at θs

∼= –53 deg, θs
∼= –47 deg, θs

∼= –40 deg,
θs

∼= –32 deg, θs
∼= 11 deg, θs

∼= 24 deg, θs
∼= 34 deg, θs

∼= 40 deg, θs
∼= 46 deg,

θs
∼= 54 deg, θs

∼= 62 deg, θs
∼= 69 deg, and θs

∼= 79 deg in the case where
θ0 = 40 deg. A strong enhanced backscattering peak on top of the ring in the
retroreflection direction is present in Fig. 5(b). The positions of the maxima in the
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Figure 5 The experimental results for the mean differential intensity of the scattered
light. (a) θ0 = 0 deg and (b) θ0 = 40 deg.

angular distribution of the intensity of the scattered light depend on the angle of
incidence, and rings in the specular and backscattering directions are present; thus,
the scattering patterns display Quételet rings.

To study the spectral redistribution of the scattered light, the wavelength de-
pendences of the intensity of the light scattered into the directions of θs = 69 deg
and θs = –43 deg have been measured. At the wavelength of the incident light
λ = 632.8 nm the maximum of one of the Quételet rings is at θs = 69 deg. At the
same wavelength the angle of scattering θs = –43 deg is almost at the minimum
between two neighboring rings.

In Fig. 6 the normalized measured wavelength dependences of the inten-
sity of the light scattered into the directions given by (a) θs = 69 deg and (b)
θs = –43 deg are presented. In the same figures the wavelength dependences of
the intensity of the incident light (red curves) and the calculated intensities of the
scattered light (blue curves) are also presented. The intensities plotted in Fig. 6
are normalized by the maximum of the strongest peak in the spectrum of the in-
cident and scattered radiation, respectively, so that the changes in the wavelength
dependence can be clearly seen. The theoretical curve was obtained by multiplying
the experimental data for the incident light (after converting them into a function
of frequency) by numerical data for the mean differential reflection coefficient ob-
tained from Eq. (33), and subsequently transforming the result into a function
of the wavelength and normalizing it by the maximum value of the resulting dis-
tribution. As is seen from Fig. 6(a) in the case where the angle of scattering is
θs = 69 deg, the experimental results and the results of theoretical calculations are
in good agreement, showing that stronger scattering occurs in the blue part of the
spectrum. In the case where θs = –43 deg the scattering is stronger in the red part
of the spectrum, as was expected from the results of our numerical calculations.
The agreement between the experimental and theoretical curves in the blue wing
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Figure 6 The wavelength dependence of the differential intensity of the light scat-
tered into the directions (a) θs = 69 deg and (b) θs = –43 deg. The angle of incidence
θ0 = 40 deg. The red curves give the intensity of the incident light (arc lamp), the black
rectangles give the measured intensity of the scattered light, and the blue curves are the
calculated wavelength dependences of the scattered light in the case where the spectral
density S0(ω) is obtained from the spectrum of the incident light. The parameters of the
scattering system are the same as in Fig. 2.

of the spectrum can be improved by a slightly different choice of the value of the
mean thickness of the film.

11.4 Conclusions

In this paper we have presented theoretical and experimental results for the change
in the spectrum of the light scattered from a randomly rough dielectric film de-
posited on a metallic substrate, when the scattering angle is one of the angles at
which a Selényi or a Quételet ring supported by the scattering system occurs, de-
pending on the roughness of the film. We have shown theoretically that because
the angular positions of these rings depend strongly on the wavelength of the inci-
dent light, large changes are expected in the spectrum of the light scattered at the
position of one of these rings. Using a broadband source of the incident light we
observed strong spectral changes in the wavelength dependence of the intensity of
the light scattered at an angle at which a Quételet ring occurs. Thus, theory and
experiment agree in demonstrating the occurrence of large, observable, spectral
changes in the scattering of light from the randomly rough surface of a suitably
chosen scattering system.
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CHAPTER 12

EMIL WOLF AND OPTICS IN THE

CZECH REPUBLIC

Jan Peřina

12.1 Introduction

Emil Wolf was born in Prague, and after holding various positions he began work
at the University of Rochester. He was there when Prof. B. Havelka contacted
him during the ICO Congress in Paris in 1963. After that we had various levels
of interaction, less fragmented before 1990 and more intense after 1990. How-
ever, from the earliest contacts, Prof. Wolf has strongly influenced modern optics
in the Czech Republic (formerly Czechoslovakia), particularly its development in
the branches of physical optics, optical physics, and quantum optics. Before 1990,
a more systematic collaboration began after the International Optical Conference
held in Jena in 1979, especially as related to contributions to Progress in Optics.
After 1990 he visited the Czech Republic to cooperate with the Charles Univer-
sity, Academy of Sciences of the Czech Republic, and with the Palacký University
in Olomouc, which awarded him a Gold Medal and an honorary doctorate. He
also received a Gold Medal from the Czechoslovak Academy of Sciences. He be-
came a member of Friends of the Palacký University, supporting scientific compe-
titions of students, and an honorable member of Societas Scientiarum Bohemica.
His most recent collaboration involved cooperating in the preparation of new vol-
umes of Progress in Optics. This was also a period when he strongly supported us
by providing copies of fundamental books. We should also mention his support
in publishing the fundamental book in thin film optics by A. Vaší̌cek [1]. In this
contribution, we would like to summarize and recall some earlier results achieved
under his influence. In particular we would like to mention imaging with partially
coherent beams of arbitrary order, the phase problem, arbitrary ordering of field
operators in multimode formulation, and the related inverse problem of recon-
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struction of the statistical properties of radiation from photocount measurements.
The latter includes nonclassical states, application to generalized multimode super-
positions of signal and quantum noise describing nonclassical behavior of systems,
the quantum Zeno effect, spectral coherence, and nonlinear optical couplers. These
results were further continued by systematic studies of the propagation of radiation
in random and nonlinear media and of quantum theory of measurements, quantum
cloning, quantum information, etc. Some of these results were reviewed earlier in
several Progress in Optics articles.

12.2 Imaging with Partially Coherent Light of Arbitrary

Order

A general formulation of imaging with partially coherent light of any statistical
behavior is based on the 2nth order correlation function �(x1, . . . , x2n), which is
considered as an object and image function and imaging is described by the com-
plex amplitude diffraction function K(x′ – x). Then the relation between the object
and image functions is given by

�
(i)(x′

1, . . . , x′
2n) =

∫
. . .
∫

K*(x′
1 – x1) . . . K(x′

2n – x2n)

× �
(o)(x1, . . . , x2n) dx1 . . . dx2n, (1)

where the object and image correlation functions [2,3] are designated by the
indices (o) and (i), respectively, and the asterisk signifies complex conjuga-
tion.

We can now distinguish linear imaging, provided that correlations of the in-
stantaneous intensities are measured in the image, and we can distinguish non-
linear imaging, provided that the nth order intensity is measured. In the former
case, we have the multidimensional spatial analysis quite analogous to the standard
spatial analysis of imaging with partially coherent light. In the latter case Eq. (1)
reads

�
(i)(x′, . . . , x′) =

∫
. . .
∫

K*(x′ – x1) . . . K(x′ – x2n)

× �
(o)(x1, . . . , x2n) dx1 . . . dx2n, (2)

where �(i)(x′, . . . , x′) represents the nth order intensity I(n)(x′) at an image
point x′.
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Performing the spatial Fourier analysis, we arrive at Ref. [4] (Chapter 9 and
references therein)

G̃(o)(µ) =
∫ +∞

–∞
. . .
∫ +∞

–∞
L(η1, . . . ,η2n)

× δ(η1 + · · · + ηn – ηn+1 – · · · – η2n + µ)

× ũ(o)*(η1) . . . ũ(o)(η2n) dη1 . . . dη2n, (3)

where ũ is the object spatial frequency complex-field amplitude,

L(η1, . . . ,η2n) =
∫ +∞

–∞
. . .
∫ +∞

–∞
g̃(o)(µ′

1, . . . ,µ′
2n)

× K̃*(µ′
1 + η1) . . . K̃(µ′

n + η2n) dµ′
1 . . . dµ′

n (4)

is the transfer function, g̃(o) is the spatial Fourier transform of the degree of spatial
coherence γ(o)(x1, . . . , x2n), and K̃ is the spatial Fourier transform of the diffraction
function (pupil function). The well-known cases of spatial coherent or incoherent
light are obtained as special cases. Nontrivial imaging is obtained only when the
spatial frequencies are related as η1 + · · · + ηn – ηn+1 – · · · – η2n + µ = 0.

This general description of optical imaging can serve as a basis for reconstruc-
tion of the object from its image and for solving the problem of the similarity
between the object and its image. We have considered two-point resolving power
using a superposition of two Gaussian functions and the slit as a system. The in-
formation in the image for filtered spatial frequencies was reconstructed by means
of analytic continuation. We were able to resolve two points separated 8% below
the Rayleigh limit up to a 5% noise level in the image.

Considering real amplitudes I(n)1/2n(x) = u(x) in imaging law [Eq. (2)], we
can define the similarity between an object and its image as u(o)(x) = λu(i)(x),
which leads to the algebraic integral equation

u(o)2n(x′) = λ2n
∫

. . .
∫

K*(x′ – x1) . . . K(x′ – x2n)

× γ(o)(x1, . . . , x2n)u(o)(x1) . . . u(o)(x2n) dx1 . . . dx2n. (5)

This nonlinear equation can be solved numerically to obtain structures imaged
similarly, in addition, some qualitative conclusions can be obtained, e.g., branching
of a structure imaged similarly can arise for an eigenvalue λ into several structures
imaged similarly with the same similarity coefficient λ.
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12.3 Phase Problem

A review of the phase problem initiated in optics by Emil Wolf can be found in
Ref. [4]. An interesting feature of the problem seems to be its formulation in
terms of a singular integral equation following from the Hilbert transformation:

f (x) = –
tanφ(x)

π
P
∫ +∞

–∞
f (x′)
x′ – x

dx′, (6)

where f (x) is the imaginary part of the degree of coherence γ(x) = |γ(x)| ×
exp[iφ(x)], and P denotes the Cauchy principal value of the integral. This sin-
gular integral equation can be solved by means of the Sokhotski-Plemelj formulas,
provided that the function |γ(x)| tends to zero at least as |x|–1 for large |x|, and
that it possesses no zero in the complex plane, thus we obtain the well-known ex-
pression for the phase

φ(x) =
1
π

P
∫ +∞

–∞
ln|γ(x′)|

x′ – x
dx′. (7)

It is well known that this minimal phase may be drastically changed by the zero
points of the degree of coherence lying in the complex plane, but little is known
about a relation among the position of zero points and physical properties. How-
ever, if the degree of coherence has zeros in the complex plane, we can consider
a small bright background C > 0 so that the function γ′(x) = γ(x) + C has no
zeros and the phase is uniquely determined [5]:

tanφ(x) =
|γ′(x)|sinα(x)

|γ′(x)|cosα(x) – C
, (8)

where α is the phase of |γ′(x)| obtained as the minimal phase.

12.4 Unified Correlation Tensors

As shown in Ref. [4], Chapter 7, a number of equations of motion and conserva-
tion laws (Ref. [3], Sect. 6.5), for correlation tensors E ,H,M,N can strongly be
simplified, which is important for applications of the correlation theory in particu-
lar, if a super matrix is introduced:

K̂ =
( Ê M̂
N̂ Ĥ

)
, (9)
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together with the matrix

σ̂ =
(

0 –1
1 0

)
, (10)

by which the supermatrix K̂ can successively be multiplied in various connections
and its trace can be used. It holds that σ̂† = –σ̂. For instance, instead of eight
equations of motion for single correlation tensors in vacuo, we have two equations:

∑
k, l

εjkl
∂

∂x1k
K̂lm(x1, x2) –

σ̂

c
∂

∂t1
K̂jm(x1, x2) = 0̂,

(11)∑
k, l

εjkl
∂

∂x2k
K̂lm(x1, x2) +

1
c

∂

∂t2
K̂jm(x1, x2)σ̂ = 0̂,

where εjkl is a Levi-Civita-unit antisymmetric tensor and x denotes spatial and
temporal variables. From these equations of motion we can derive wave equations
in vacuo:

�1,2K̂jm =
1
c2

∂2

∂t21,2
K̂jm,

(12)∑
k, l, i, n

εjklεmin
∂

∂x1k

∂

∂x2i
K̂ln =

1
c2

∂2

∂t1∂t2
σ̂K̂jmσ̂–1.

Similarly, we can write in a compact form equations for stationary fields, conserva-
tion laws and equations for spectral correlation tensors [4].

12.5 Arbitrary Ordering of Field Operators

Fundamental works in this field were published by Agarwal and Wolf [6] and
Cahill and Glauber [7]. In Ref. [4] nontrivial multimode generalization leading
to the generalized photodetection equation and an interesting inverse problem for
determination of wave properties of radiation from photocount measurements are
described (Chapter 16 and references therein).

Describing an M-mode field by the number operator n̂ =
∑

λ â†
λâλ and the

corresponding wave-integrated intensity W =
∑

λ |αλ|2 (αλ being the complex
amplitude in the mode λ corresponding to the photon annihilation operator âλ),
we can derive the following relation between the s-ordered and number-generating
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functions

〈exp(iyn̂)〉s = [1 – (1 – s)iy/2]–M
〈[1 + (1 + s)iy/2

1 – (1 – s)iy/2

]n
〉
, (13)

where iy is a parameter of the generating function; or, we can obtain the relation
between s1- and s2-ordered generating functions

〈exp(iyn̂)〉s2 = [1 + (s2 – s1)iy/2]–M
〈
exp

[ iyn̂
1 + (s2 – s1)iy/2

]〉
s1

. (14)

In particular, from Eq. (9) we can derive the generalized photodetection equa-
tion [8,9] relating the photon number distribution p(n) and quasi-distribution
P(W , s) of the integrated intensity related to s-ordering

p(n) =
1

�(n + M)

( 2
1 + s

)M( s – 1
s + 1

)n

×
∫ ∞

0
P(W , s)LM–1

n

( 4W
1 – s2

)
exp

(
–

2W
1 + s

)
dW , (15)

where LM–1
n is the Laguerre polynomial and � is the Gamma function. In the

limit s → 1 for the normal operator ordering related to photodetection, we obtain
the standard Mandel photodetection equation as the average of the Poisson kernel.
With the exception of certain cases, we can state the general relations between
integrated intensities distributions for two orderings and for their moments

P(W , s2) =
2

s1 – s2

∫ ∞

0

( W
W ′

)(M–1)/2
exp

[
–

2(W + W ′)
s1 – s2

]

× IM–1

[
4

(WW ′)1/2

s1 – s2

]
P(W ′, s1)dW ′, Re s1 > Re s2, (16)

where IM–1 is the modified Bessel function, and

〈Wk〉s2 =
k!

�(k + M)

( s1 – s2
2

)k
〈
LM–1

k

( 2W
s2 – s1

)〉
s1

. (17)

It is worth noting that this formulation provides a basis for solving various
inverse problems, for example, to determine P(W , s) from the photocount mea-
surements giving p(n). We can obtain, for example, for normal ordering

PN (W) = exp[–(ζ – 1)W]
∞∑

j=0

cjL0
j (ζW), (18)
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where

cj = ζ

j∑
s=0

p(s)
(–ζ)s

(j – s)!s!
(19)

or more generally for M-mode systems

PN (W) = WM–1
∞∑

j=0

cjLM–1
j (W), (20)

where

cj =
j!

�( j + M)

j∑
s=0

(–1)sp(s)
( j – s)!�(s + M)

. (21)

These reconstruction formulas have the advantage that they can be used to recon-
struct approximate quasi-distributions from finite number measurements and also
provide some regularized forms of quasi-distributions [when phase should also be
included, a basis {αλLλ

n (|α|2)} for a field complex amplitude α can be used, which
is orthogonal with the weight exp(–|α|2)].

The above formulas are also able to reconstruct nonclassical behavior of
the quasi-distribution, e.g., its negative values, as applied, for instance, by
Klyshko [10]. This can be done when defining a set of “moments” Mn = p(n)n!
and quadratic forms

qm =
m∑

j, k=0

Mj+kujuk (22)

for an arbitrary nontrivial real vector {uj} and m = 0, 1, . . . . If qm are larger than
zero for every m, then it is possible to construct the nonnegative distribution
PN (W) from a given sequence of moments Mn in a unique way. However, if for
some m this quadratic form equals zero, there exists a unique quasi-distribution,
the support of which is composed of a finite numbers of points equal to the minimal
number of the m’s for which the form equals zero. The criterion can be expressed
in terms of determinants Dm = Det Mj+m, j = 0, 1, . . . , m, because if these deter-
minants are positive, then the forms are also positive (Ref. [11], Sect. 3.8).
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12.6 Generalized Superposition of Signal and Quantum

Noise

The above formalism can be applied for obtaining multimode superposition of co-
herent signal and noise, giving a generalization of the well-known Mandel-Rice
formula and permitting a quantum generalization. Assuming a rectangular broad-
band spectrum of noise, the M-mode generating function is the generating func-
tion again for the Laguerre LM–1

n polynomials (a polarized superposition is as-
sumed),

〈exp(isW)〉N =
(

1 – is
〈nch〉
M

)–M

exp


 is〈nc〉

1 – is
〈nch〉
M


 , (23)

where is is the parameter of the generating function, and 〈nc〉 and 〈nch〉 are the
mean numbers of coherent signal and chaotic noise photons (Ref. [11], Sect. 5.3
and references therein).

The corresponding distribution of the integrated intensity is expressed in terms
of modified Bessel functions,

PN (W) =
M

〈nch〉
(

M
〈nc〉

)(M–1)/2

exp
(

–
M + 〈nc〉

〈nch〉 M
)

× IM–1

(
2M

[〈nc〉W]1/2

〈nch〉
)

, W ≥ 0,

= 0, W < 0. (24)

For the photon number distribution we have

p(n) =
1

�(n + M)

(
1 +

〈nch〉
M

)–M(
1 +

M
〈nch〉

)–n

× exp
(

–
〈nc〉M

〈nch〉 + M

)
LM–1

n

(
–

〈nc〉M2

〈nch〉(〈nch〉 + M)

)
. (25)

The corresponding factorial moments are

〈Wk〉N =
k!

�(k + M)

(〈nch〉
M

)k

LM–1
k

(
–
〈nc〉M
〈nch〉

)
. (26)

In special cases we obtain expressions for fully coherent or fully chaotic light, e.g.,
Poisson or Mandel-Rice distributions.
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For nonlinear two-photon processes these formulas can be generalized so that
they can describe nonclassical effects. The generating function “splits” as follows:

〈exp(isW)〉N = [1 – is(E – 1)]–M/2[1 – is(F – 1)]–M/2

× exp
[

isA1

1 – is(E – 1)
+

isA2

1 – is(F – 1)

]
, (27)

where E = B – |C|, F = B + |C| represent quantum noise; B = 〈�â†�â〉 and
C = 〈(�â)2〉 are phase-independent and phase-dependent amplitude fluctuations,
respectively; number 1 subtracted from E, F represents the subtraction of vacuum
fluctuations in the normal operator ordering; and A1,2 are signal components

A1,2 =
1
2


 M∑

j=1

|ξj(t)|2 ∓ 1
2|C|

(
C*

M∑
j=1

ξ2
j (t) + c.c.

) , (28)

where ξj(t) are time-developed complex amplitudes and c.c. denotes the complex
conjugate terms. For example, for the degenerate optical parametric process we
obtain

B = cosh2(gt),

C =
i
2

sinh(2gt)exp(iφ),

E – 1 =
1
2

[exp(–2gt) – 1] ≤ 0, (29)

F – 1 =
1
2

[exp(2gt) – 1] ≥ 0,

A1,2 =
1
2
|ξ|2exp(∓2gt)[1 ∓ sin(2θ – φ)] ≥ 0,

where g is a nonlinear coupling constant proportional to the quadratic susceptibility,
φ is the phase of pumping, and θ is the initial phase of the signal.

We see that the quantum noise component E – 1 is negative for all times and we
have a superposition of a signal with negative quantum noise. If the initial phases
are suitably related, e.g., 2θ – φ = –π/2, the first factor in the generating func-
tion [Eq. (27)] involving A1 and E – 1 is dominating and the photon distribution
reduces to sub-Poissonian distribution for short times. For later times oscillations
in p(n) occur. The photon number distribution and its factorial moments are ex-
pressed in terms of the Laguerre polynomials as follows:
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Figure 1 The characteristic function of the generalized superposition of coherent signal
and quantum noise, illustrated by Jitka Brůnová.

p(n) =
1

(EF)M/2

(
1 –

1
F

)n
exp

(
–

A1

E
–

A2

F

)

×
n∑

k=0

1
�(k + M/2)�(n – k + M/2)

(1 – 1/E
1 – 1/F

)k
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× LM/2–1
k

(
–

A1

E(E – 1)

)
LM/2–1

n–k

(
–

A2

F(F – 1)

)
, (30)

〈Wk〉 = k!(F – 1)k
k∑

l=0

1
�(l + M/2)�(k – l + M/2)

(E – 1
F – 1

)l

× LM/2–1
l

(
–

A1

E – 1

)
LM/2–1

k–l

(
–

A2

F – 1

)
. (31)

Denoting p1(n) and p2(n) as partial virtual distributions related to factors con-
taining A1, E and A2, F, respectively, the resulting distribution is a discrete convo-
lution,

p(n) =
n∑

k=0

p1(n – k)p2(k). (32)

In the above case of phase relations, the partial distribution p1 is oscillating and
takes on negative values, whereas the partial distribution p2 is geometric and non-
negative. As a result of convolution [Eq. (32)], nonnegative resulting photon
number distribution arises as an oscillating distribution.

Thus we have a generalization of the classical superposition of signal and noise,
extending it to negative quantum noise components, which makes it possible to
include nonclassical effects.

12.7 Quantum Zeno Effect

The quantum Zeno effect refers to the inhibition of the isolated temporal evolution
of a dynamical system when the observation of such evolution is attempted (see a
review in Ref. [12]). This observation is usually described by frequent measure-
ments on the system performed in order to discover whether the initial system has
changed or not. In the limit of very frequent measurements, continuous observa-
tion, or arbitrary high resolution, it may happen that the system is locked on its
initial state, and the evolution, which is the aim of the observation, is in fact in-
hibited and does not occur. The effect was demonstrated using atomic transitions,
neutron spin dynamics, etc. We have shown it using nonlinear effect of parametric
down-conversion and Raman scattering [13–15].

We can consider a nonlinear crystal of length L that is pumped by a strong,
classical, and coherent field to produce pairs of signal and idler photons via sponta-
neous parametric down-conversion. Using the interaction picture, this interaction
is described by the effective Hamiltonian

Ĥ = h̄g
(

â†
s â†

i + âsâi

)
, (33)
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Figure 2 Quantum Zeno effect, illustrated by Jitka Brůnová.

where âs and âi are the slowly varying annihilation operators for signal and idler
beams respectively, and g is a coupling parameter depending on the pump field and
the quadratic susceptibility of the medium. We have also assumed the frequency
resonance condition ωp = ωs + ωi, where ωp, ωs, and ωi are the frequencies of
the pump, signal, and idler beams, respectively. We will denote by τ the interaction
time associated with the length L of the crystal. We focus on the generation of the
signal from the vacuum. The interaction Hamiltonian, together with the standard
quantum lossy mechanism [11], produce, after the interaction time τ, the follow-
ing general relation between the output operator â′

s for the signal field and the input
signal and idler operators âs and âi:

â′
s = µâs + νâ†

i + L̂s, (34)

where

µ = exp(–γsτ/2)cosh(gτ), ν = –iexp(–γsτ/2)sinh(gτ), (35)

L̂s =
∑

l

wslb̂sl (36)
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is an operator related to the Langevin force for signal losses and it holds that

∑
l

|wsl|2 = 1 – exp(–γsτ) (37)

here b̂sl are initial reservoir operators, γs is a signal damping coefficient, and we
have neglected rotating reservoir terms, which give negligible contribution in the
optical region.

Now we assume that the crystal is divided into N equal parts of length
�L = L/N, with associated interaction time �τ = τ/N within each part. We can
assume that the signal beams of each part are perfectly superimposed and aligned,
and that reflection at each piece can be avoided or made negligible, for instance,
embedding the N pieces in a linear medium with the same refractive index. On
the other hand, the idler path is interrupted after each piece by means of mirrors,
for instance. The output idler beams behind each piece are removed from the idler
path, being replaced by new idler beams that are in vacuum. This modification
makes it possible to observe the N output idler beams to detect the emission when
it occurs, for instance, by means of N photodetectors. Then, the moment of emis-
sion can be inferred with accuracy �τ, and the relative resolution is given by the
number of pieces �τ/τ = 1/N. All losses related to various imperfections can be
included in the lossy reservoirs.

Now we can examine the influence of this arrangement on the single-photon
emission. The signal output operator after N pieces reads

â′
sN = µNâs1 +

N∑
k=1

µN–kνâ†
ik +

1 – µN

1 – µ
L̂sN, (38)

where the coefficients in Eq. (35) are considered for �τ. Now the probability to
have one signal photon is given by

〈â′†
sNâ′

sN〉vac = N(g�τ)2 + N2〈nrsN〉γs�τ

=
(gτ)2

N
+ 〈nrs〉γsτ, (39)

where we have considered g�τ 	 1, γs,i�τ 	 1 so that µ 
 1, ν 
 –ig�τ,∑
l |wsl|2 
 γs�τ, 〈nrs〉 are mean numbers of reservoir oscillators, which are neg-

ligibly small in the optical region for room temperatures, and the signal beam is also
initially in vacuum. We have two terms here: the first one arises from nonlinear dy-
namics, the second one from the signal lossy mechanism. The first term exhibits
the quantum Zeno effect because no signal photons are radiated if the accuracy of
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the observation is increased by increasing N. In the limit of N tending to infinity,
the probability of signal photon emission tends to zero and there is no emission at
all. We can note that whether the attempted measurement on the idler modes is
actually made or not appears to make no difference. It is sufficient that it could be
made. In general, the losses in the signal beam degrade the quantum Zeno effect.
This lossy effect is nonlocal because the measurement on the idler beam reduces
the Zeno effect in the signal beam through its losses.

We see that for the unobserved system the N emitters are stimulated by the
same vacuum, imparting phase correlations between them. On the observed sys-
tem, the pieces are influenced by different and statistically independent vacuum
fields leading to mutually incoherent emissions. This refers rather to the idler
beam; however, the signal beam is also controlled through the strong quantum
nonlocal correlations. Alternatively, the probability of emission on the unobserved
system can be considered as the constructive interference between N possible and
intrinsically indistinguishable ways for the emission to occur. When we interrupt
the idler path N times, these ways become distinguishable by the possible de-
tection of the idler photon. This possibility wipes out the interference, and the
emission is modified. In the optical region, for room temperatures the obtained
lossy effects in the signal beam are not critical for observation, Nmax being of
about 1020.

If phase mismatch in the nonlinear process is also taken into account, the signal
photon emission can be supported and the anti-Zeno effect may arise [14,16] in
which signal photon emission is increased by the measurement. The above arrange-
ment can be modified using the Kerr effect [13]. The influence of losses is similar.

12.8 Spectral Coherence

Further, we can mention the stimulating influence of the Wolf effect [17–19] on
the research of Czech physicists in spectral coherence. In particular, original results
were obtained for spherical symmetric fields [20–23] and partially coherent fields
diffracted on gratings [24,25] and propagating in optical waveguides [26–29].
Some earlier experimental results in x-ray physics are also related [30].

12.9 Nonlinear Optical Couplers

The above results were continued by systematic studies of the propagation of ra-
diation in random and nonlinear media [31] and of the evolution of quantum
statistics in nonlinear optical processes [11,32,33]. Much effort has been devoted
to the research of the quantum statistical properties of nonlinear optical couplers
composed of two or three linear and nonlinear waveguides connected by evanescent
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Figure 3 Evanescent waves in nonlinear optical coupler, illustrated by Jitka Brůnová.

waves [34,35] used for generation and propagation of nonclassical light. Nonlin-
ear waveguides operated by degenerate as well as nondegenerate optical parametric
processes, by Raman or Brillouin scattering and Kerr effect, and also a bandgap
coupler, were considered. Squeezing of vacuum fluctuations, sub-Poissonian pho-
ton behavior, collapses, and revivals of oscillations and properties of quantum phase
were examined in single and compound modes in a fully quantum way in short-
length approximations or in a parametric approximation of strong pumping. In
some cases, symbolic computations to obtain higher-order fully quantum solutions
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were applied. Both regimes of codirectional and contradirectional propagation were
considered. Substituting schemes and stability problems were also investigated.

Such composed nonlinear devices can be applied not only as sources for
the generation and propagation of light exhibiting nonclassical properties and as
switching devices, but also as elements for quantum measurements using a linear
waveguide as a continuous probe device [36] and for the investigation of quantum
coherence [37].

12.10 Conclusion

We have illustrated some results stimulated by scientific contacts with Emil Wolf.
These results form a basis for recent studies in the quantum theory of measure-
ments [38,39], in quantum propagation [40], and in quantum cloning and quan-
tum information [41].

Two further contributions to Progress in Optics from the Czech Republic were in
the field of scattering of light from multilayer systems with rough boundaries [42]
and in ellipsometry of real thin film systems [43].

We are very happy that our life trajectory crossed the life trajectory of Emil
Wolf several times.
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11. J. Pěrina, Quantum Statistics of Linear and Nonlinear Optical Phenomena, 1st ed.,
D. Reidel, Dordrecht (1984); 2nd ed., Kluwer, Dordrecht (1991).

12. P. Facchi and S. Pascazio, “Quantum Zeno and inverse quantum Zeno ef-
fects,” in Progress in Optics 42, E. Wolf, Ed., 147–217, Elsevier, Amsterdam
(2001).
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CHAPTER 13

OPTICAL PATHLENGTH

SPECTROSCOPY

Aristide Dogariu

13.1 Introduction

For a long time, the intensity and phase fluctuations determined by multiple light
scattering were regarded as “optical” noise that degrades the radiation properties.
Recently, remarkable advances in fundamental understanding and experimental
methodologies proved that light propagation in random media is a source of unex-
plored physics with a wide range of potential applications. Among them, the med-
ical applications occupy a special place, since it has been proven that scattering of
optical radiation can be successfully used as a noninvasive investigation technique.

In many cases of practical interest, light propagating in dense scattering media
can be described by the diffusion of scalar photons and therefore is fully charac-
terized by their distribution of optical pathlengths. This is a comprehensive quan-
tity that describes the statistics of photon random walk through many scattering
events in a random medium. Experimental techniques such as diffusive wave spec-
troscopy [1] and coherent backscattering [2] rely on different models of the prob-
ability density of optical pathlengths in order to describe the measurements. The
theoretical models typically use the time-resolved diffusion equation, which pro-
vides a satisfactory description of the photon transport phenomenon in scattering
media whenever the absorption is not significant and the medium can be consid-
ered as infinite. Refined boundary conditions for the diffusion equation extend
its applicability closer to the interfaces of finite-sized media. Nevertheless, there
are many situations in which the scattering process cannot be treated as diffusive
and, therefore, a direct way to measure the pathlength distribution is highly de-
sirable when approximate theoretical values are not available anymore. For quite
some time, direct time-of-flight measurements were the only experimental tech-
niques able to provide direct information about the pathlength distribution of scat-
tered light. However, low dynamic range and limited resolution impose severe
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limitations in using time-resolved measurements to characterize light propagation
through highly scattering media.

Due to characteristics such as beam directionality and intensity, the use of
highly coherent radiation produced by lasers has been the undisputed choice for
many light scattering procedures. Recent developments in light sources and de-
tection techniques offer new, more sophisticated experimental possibilities. By ad-
justing the coherence properites of light, one can use interferometric approaches
to select specific orders of scattering and, therefore, directly infer the pathlengths
distribution of photons scattered by a random medium. The background of this
approach is introduced, different implementations are presented, and several ap-
plications are discussed in the next sections.

13.2 Multiple Light Scattering in Random Media

13.2.1 Radiative transfer

For random media with volume disorder often encountered in practice, the scat-
tering phenomena depend essentially on the ratio between the characteristic length
scales of the system and the radiation wavelength, suggesting that a statistical de-
scription in terms of such characteristic scattering lengths could be sufficient. In
general, the particular location, orientation, and size of a scattering center are ir-
relevant, and the underlying wave character of the propagating field seems to be
washed out. Because energy is transported through multiple scattering processes,
what matters is only the energy balance. Of course, this approach cannot account
for subtle interference and correlation effects, but refinements can be developed on
the basis of a microscopic interpretation of radiative transfer [3].

A comprehensive mathematical description of the nonstationary radiative trans-
port is given by Chandrasekhar [4]. The net effect of monochromatic radiation
flow through a medium with a number density ρ of scattering centers is expressed
in terms of the specific intensity I(r, s, t). This quantity is sometimes called ra-
diance and is defined as the amount of energy that, at the position r, flows per
second and per unit area in the direction s. When radiation propagates over the
distance ds, there is a loss of specific intensity due to both scattering and absorp-
tion: dI = –ρ(σsc + σabs)Ids. In the meantime, there is a gain of specific intensity
due to scattering from a generic direction s′ into the direction s quantified by the
scattering phase function P(s′, s). In general, there could be an increase, ε(r, s, t),
of specific intensity due to emission within the volume of interest and the net loss-
gain balance represents the nonstationary radiative transfer equation [5]:

[1
c

∂

∂t
+s ·∇ +ρ(σsc +σabs)

]
I(r, s, t) = ρσsc

∫
P(s′, s)I(r, s, t) dωs +ε(r, s, t).

(1)
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No analytical solution exists for the transfer equation and, in order to solve
specific problems, one needs to assume functional forms for both the phase func-
tion and the specific intensity. Successive orders of approximation are obtained by
spherical harmonic expansion of the specific intensity. One approximation, for in-
stance, is obtained by expressing the diffuse radiance as a linear combination of an
isotropic radiance and a cosine-modulated term.

13.2.2 Diffusion approximation

Perhaps one of the most widely used treatments for multiple light scattering is
the so-called diffusion approximation. When the absorption is small compared to
scattering, scattering is almost isotropic, and if the radiance is not needed close to
the source or boundaries, then the diffusion theory can be used as an approximation
following from the general radiative transfer theory. To get insight into the physical
meaning of this approximation it is convenient to define measurable quantities such
as the diffuse energy density (average radiance) U(r, t) =

∫
4π I(r, s, t) dωs and

the diffuse flux J(r, t) =
∫

4π I(r, s, t)s dωs. In the diffusion approximation, the
diffuse radiance is approximated by the first two terms of a Taylor’s expansion [6]:

I(r, s, t) 
 U(r, t) +
3

4π
J(r, t) · s, (2)

and the following differential equation can be written for the average radiance:

D∇2U(r, t) – µaU(r, t) –
∂U(r, t)

∂t
= S(r, t). (3)

The isotropic source density is denoted by S(r, t) and D is the diffusion coefficient,
which is defined as

D =
1

3[µa + µs(1 – g)]
(4)

in terms of the absorption µa and scattering µs coefficients and the scattering asym-
metry (anisotropy factor) g. Because the phase function associated with the scatter-
ing process is characterized by a single anisotropy factor, the diffusion approxima-
tion provides mathematical convenience. Through renormalization, an asymmetry-
corrected scattering cross section that depends only on the average cosine of scat-
tering angle defines the diffusion coefficient in Eq. (4) and, therefore, an essen-
tially anisotropic propagation problem is mapped into an almost isotropic, diffusive
model.

The photon migration approach based on the diffusion approximation has been
very successful in describing the interaction between light and complex fluids or
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biological tissues [7]. It is instructive to note that three length scales characterize
the light propagation in this regime: the absorption length la = µ–1

a , which is the
distance traveled by a photon before it is absorbed, the scattering length ls = µ–1

s ,
which is the average distance between successive scattering events, and the trans-
port mean-free path l* = ls/(1 – g) that defines the distance traveled before the
direction of propagation is randomized. In experiments that are interpreted in the
frame of the diffusion approximation, l* is the only observable quantity and, there-
fore, the spatial and temporal resolution are limited by l* and l*/c, respectively.

The following observation is worth making regarding the time of flight t. If
one assumes a photon propagation with constant group velocity, this time can be
immediately related to a characteristic length scale, the optical pathlength s = v · t.
Moreover, a pathlength probability density P(s) = J(s)

∫∞
0 P(s) ds can be defined

that represents the probability that photons traveled an equivalent optical path-
length in the interval (s, s + ds). The pathlength distribution P(s) fully describes
various situations of strong multiple light scattering and can be considered as the
solution of the diffusion equation for the specific boundary conditions and source
specifics.

13.2.3 Various solutions for P(s)

In practice, diffusion Eq. (3) is solved subject to boundary conditions and source
specifics. Once the energy density U is calculated, the current density J can be
obtained using Fick’s law J(r, t) = –D∇U(r, t) [8]. It is worth noting that in most
scattering experiments, the measurable quantity is actually the diffuse flux J(r, t).
For instance, the total optical power measured is proportional with the integral
of J(r, t) over the area of the detector. Most appealing, however, is the fact that
analytical solutions can be obtained for reflectance and transmittance calculations.

The first example is that of a scattering medium that is infinitely extended and
has homogeneous scattering and absorption properties. In this case, it was shown
that the diffuse energy density at a distance r away from a pointlike source is [9]

U(r, s) = (4πDs)–3/2exp
(

–
r2

4Ds
– µas

)
. (5)

Using this result, the corresponding pathlength distribution can be evaluated for a
particular detection geometry by accounting for the acceptance angle of the detec-
tion system.

A situation often encountered in practice is that of a point source placed at
the surface of a semi-infinite random medium. Setting an appropriate boundary
condition such that U vanishes on the plane z = –ze, the diffusion equation can be
solved using Fick’s law, and the pathlength resolved reflectance can be evaluated
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to be

P(r, s) = (4πDc)–3/2zes–5/2exp(–µas)exp
(

–
r2 + z2

e

2Ds

)
, (6)

where r is now the distance between the injection and collection points measured
across the surface of the semi-infinite random medium. In the next section we will
use this result for the particular case when the points of injection and detection
coincide, i.e., r = 0.

Another situation of practical interest is that of a slab of finite thickness d.
Using the method of images and appropriate boundary conditions, one finds that
the pathlength dependence of the energy flux is given by [10]

PR(r, s, d) = (4πDc)–3/2s–5/2exp(–µas)exp
(

–
r2

4Ds

)
FR(d, ze), (7)

for the reflection geometry, while a similar calculation for transmission leads to

PT (r, s, d) = (4πDc)–3/2s–5/2exp(–µas)exp
(

–
r2

4Ds

)
FT (d, ze), (8)

where FR and FT are model-specific functions depending on the extrapolation
length ze and the slab thickness. Note that in all examples presented here the en-
ergy flux corresponding to large optical pathlengths behaves like s–5/2, which is a
general feature of the diffusive behavior and does not depend on the experimental
geometry.

It is also worth mentioning that the extrapolation length ze depends on the
effective reflectivity Reff at the boundaries. The extrapolation length ratio ze/l* is
critical for describing light diffusion inside bounded media and it will be discussed
further in Sect. 13.4.2.

13.3 Using Coherence to Isolate Scattering Orders

13.3.1 Low-coherence interferometry in random media

Developed initially in the field of fiber optics, low-coherence interferometry
(LCI) [11] has become a widely used technique for various applications involving
biomedical imaging. The use of light sources with short temporal coherence offers
the depth resolution needed for optical imaging; the method is generally referred to
as optical coherence tomography (OCT) [12]. So far, LCI has been used as a filter
that suppresses the multiple light-scattering contribution and preserves the single
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scattering component characterized by well-defined scattering angles and polar-
ization. Not long ago, LCI was also used to characterize the multiple scattering
regime of wave propagation in random media [13].

In a LCI setup as depicted in Fig. 1, light from a broad-bandwidth source is
first divided into probe and reference beams that are retroreflected from a targeted
scattering medium and from a reference mirror, respectively, and are subsequently
recombined to generate an interference signal. Assuming quasi-monochromatic
optical fields (�λ/λ 	 1), the detected intensity Id has the simple form of

Id = I0 + Iref + 2 ·√I0 ·√Iref · γ(�s)cos(2π · �s/λ̄), (9)

where I0 and Iref are the intensities scattered by the multiple scattering medium
and by the reference mirror, respectively, whereas γ(�s) is the complex degree of
coherence associated with the light source. The optical path difference between the
scattered and reference fields is denoted by �s and λ̄ is the central wavelength. In
Eq. (9), two conditions are needed in order to obtain interference maxima: (1) �s
to be a multiple of wavelength, and (2) �s < Lc, where Lc = λ̄2/�λ is the co-
herence length of the source. Also, it is worth noting that the simple form of the
interference law described by Eq. (9) assumes that the two beams returning from
the target and the reference mirror maintain their full spatial coherence. If this
not the case, the concept of interferometric phase must be carefully examined. It
is known that monochromaticity is not a necessary condition for interference and
it is rather a restriction on the spatial coherence that is required [14]. It has been
pointed out that if a strict condition of spatial coherence is imposed, the statisti-
cally averaged behavior of a polychromatic field can be described by an associated

Figure 1 In a typical Michelson interferometer, the use of low-coherence radiation al-
lows isolating scattering contributions with desired pathlengths.
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monochromatic wave [15]. In a recent experiment, it has also been shown that
for spatially coherent polychromatic optical fields, the measurement of the phase
of the second-order correlations determines the phase of this associated, spatially
coherent field [16].

In practice, the signal intensity Id can be processed through conventional en-
velope detection to determine the total reflectance corresponding to the backscat-
tered field Iref. When the propagation through the random medium is determined
by a multitude of optical paths with different lengths as depicted in Fig. 1, one
can adjust the position of the reference mirror such that a specific path length s
in the medium is matched (within the coherence length Lc). Accordingly, the de-
tected signal measures only the contribution Iref(s) of the class of waves that have
traveled an optical distance s. In the optical pathlengths domain, the interferom-
eter acts as a bandpass filter with a bandwidth given by the coherence length of
the source. Accordingly, the shorter the coherence length, the narrower the optical
pathlengths interval that is recorded. Now, if we let the reference mirror sweep the
reference arm, waves with different optical pathlengths are detected and an optical
pathlength distribution is reconstructed.

The procedure outlined here describes, of course, the scattering process at the
central wavelength λ̄. This assumption is often justified in practice when relatively
narrow-band sources of radiation are used and dispersion effects can be neglected.
In high-resolution experiments, however, the monochromatic approach fails and a
full acount of the actual spectral density is required [17].

13.3.2 Optical pathlength spectroscopy

By scanning the position of the reference mirror in the standard Michelson
interferometer of Fig. 1, one effectively determines the pathlength-resolved contri-
butions Iref(s) to the total reflection. After appropriately normalizing the detected
signal, the probability density P(s) of optical pathlength through the medium is ob-
tained. The procedure is called optical pathlength spectroscopy (OPS) [18] and
allows the direct measurement of the pathlength distribution P(s) of backscattered
waves in the particular geometry of the experiment.

In a fiber optics configuration of the interferometer, the probability density P(s)
is measured for the situation when the point source and the point detector coincide,
as shown in Fig. 2. In this case, a typical OPS signal consists of backscattered in-
tensity contributions corresponding to waves scattered along closed loops that have
the same optical pathlengths and, in addition, have the total momentum transfer
equal to 4π/λ (backscattering). In the following, we will restrict ourselves to this
geometry, but it is straightforward to imagine other source-detector configurations
in which the points of photon injection and detection do not coincide. Using fiber
optics for launching and collecting the light, P(s) can then be determined interfero-
metrically following a procedure similar to the one described here.
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Figure 2 Fiber optic implementation of the OPS measurement setup that provides the
direct measurement of the pathlength distribution.

It should be noted that somewhat similar information could be obtained by
time-resolved measurements. As long as the waves propagate with a constant av-
erage velocity, the waves characterized by the same optical pathlengths can be con-
sidered as being emitted at the same moment t0. Thus, the steady-state source
could be replaced by a short pulse emitted at t0, and the pathlength probability
density could be determined using experimentally more demanding time-of-flight
measurements.

In practice, the OPS approach is limited by the fact that the signal correspond-
ing to long paths within the medium is weak and a large dynamic range is needed
for accurate measurements of pathlength distribution tails. However, as opposed
to dynamic techniques, the measurements can be extended over longer periods of
time and there is no need for sophisticated time-of-flight configurations.

An example of an OPS signal is illustrated in Fig. 3, where the pathlength-
resolved backscattered intensities corresponding to water suspensions of poly-
styrene microspheres with particle diameter of 0.46 µm and various volume frac-
tions are shown. The values of normalized backscattered intensities have been
compared with the corresponding solutions of the diffusion approximation given
in Eq. (6). In obtaining these results, absorption effects have been neglected be-
cause the absorption lengths of the media are roughly two orders of magnitude
longer than the corresponding scattering lengths. As can be seen, the diffusion
theory makes a good description of the experimental data corresponding to differ-
ent volume fractions, i.e., different scattering properties. Applying the Mie scat-
tering theory, one can calculate the values of transport mean free paths for the
media examined in Fig. 3. Excellent agreement is obtained between the Mie-
based estimations of l* and the results obtained by fitting the measurement data
within the diffusion approximation. For example, for the cases shown in Fig. 3, the
measured l* values of 197, 101, and 49.2 µm are to be compared with 206, 103,



Aristide Dogariu 275

Figure 3 Probability density functions for optical pathlengths measured in water solu-
tion of polystyrene microspheres 0.46 µm in diameter and having the volume fractions of
2, 2.5, and 10%.

and 51.5 µm, respectively, obtained from Mie theory. The remarkable agreement
proves that reliable measurements of photon transport mean-free path can be based
on OPS.

Another example is presented in Fig. 4, where OPS is applied to character-
ize the structure of porous media such as thin membranes (mixtures of cellulose
esters, polyvinylidene fluoride, and polycarbonate). The membranes consist of in-
terconnected networks of pores that are strong light scatterers, with the scattering
strength depending on the refractive index contrast and therefore on the membrane
water content. As can be seen in Fig. 4, the presence of water diminishes the re-
fractive index contrast, which reduces the scattering ability and leads, on average,

Figure 4 Pathlength distribution measured on porous membranes in dry and wet states,
as indicated. The measurements are based on the experimental arrangement of Fig. 1.
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to a shortened average optical pathlength in comparison with the highly scattering
(dry) case [19].

The measured OPS signals are well described, at least the tails of the path-
length distributions are, by solutions of the diffusion approximation applied to slabs
of finite thickness. The results of fitting the measured OPS with the prediction of
Eq. (7) are also shown in Fig. 4. Once a reliable structural model is available, the
measured pathlength spectra, or just moments of the distribution, can be further
used to determine various characteristics related to pore sizes or overall porosity of
random media [20].

13.4 Applications of OPS

13.4.1 Dynamic light scattering

Dynamic light scattering (DLS) has been established as a powerful technique for
investigating dynamic processes. Measuring the temporal fluctuations of the scat-
tered light, detailed information about the dynamics of the scattering medium can
be extracted [21]. Originally, the applications were limited to weakly scattering
media, where light propagation could be described by single-scattering models.
An important breakthrough in the field of DLS is represented by the extension
to strongly scattering media. The technique is referred to as diffusing wave spec-
troscopy (DWS) and has been used to study particle motion in concentrated flu-
ids such as colloids, microemulsions, and other systems that are characterized by
strong multiple scattering [22].

In a regime of complete diffusion of light, the DWS technique exploits the
variations of light arising from phase and amplitude fluctuations determined by
the dynamic scattering centers. To analyze the temporal autocorrelation, DWS re-
lies on accurate knowledge of the optical pathlength distribution P(s) of waves
propagating through the multiple scattering medium. The pathlength distribution
is usually obtained by solving a diffusionlike equation [such as Eq. (3)] with ap-
propriate boundary conditions. As we discussed before, the approach is suitable
for situations in which the characteristic scattering lengths are much smaller than
the geometric dimensions of the scattering medium and the absorption length is
much longer than both scattering length and sample size. Situations of practical
interest are often at odds with these assumptions; subdiffusive photon regimes are
encountered in systems with localized dynamics or flows, inhomogeneous absorp-
tion, etc. Accordingly, in order to accurately assess the dynamic structure, it is
highly desirable to provide a simultaneous and independent measurement of pho-
ton pathlength distribution.

In treating the temporal fluctuations of multiply scattered light, one evaluates
the scattered electric field as a sum over all scattered photon trajectories. The sys-
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tem’s dynamics can be described as an incoherent summation of contribution cor-
responding to different pathlengths. For a specific photon path of length s, the
electric field autocorrelation function is

G1(τ, s) ∼ P(s)
〈E*(t, s)E(t + τ, s)〉

〈|E(t, s)|2〉 , (10)

where E(t, s) is the electric field corresponding to photons that have traveled a
distance s and P(s), and the pathlength distribution is the fraction of total scattered
intensity that traverses a path of length s from the point of injection to the point
where it is detected. It has been shown that the autocorrelation of the electric field
g(1) can be related to the characteristic diffusion time τ0 of a noninteracting system
of colloidal particles through [23]

g(1)(τ) =
∫ ∞

0
P(s)exp

[
–

2τ
τ0

s
l*

]
ds, (11)

where τ0 = (Dk0)–1; D is the diffusion coefficient of the scatterers in the suspend-
ing fluid and k0 is the wave vector associated with the optical field. For Brownian
particles of diameter φ, the diffusion coefficient relates to the temperature T and
the viscosity η of the medium through the well-known Stokes-Einstein expres-
sion D = kBT /(3πηφ), where kB is the Boltzmann’s constant. Note that there is
no assumption of photon diffusion implied in the derivation of this result. It is
evident from Eq. (11) that the autocorrelation function still features a negative ex-
ponential behavior, as in conventional DLS, but now it also depends on the optical
pathlength s. It is also apparent that longer paths will decorrelate faster in time,
while shorter paths will decorrelate more slowly. This fact can be easily explained
by recognizing that the fluctuations of light undergoing a certain trajectory are due
to a cumulative effect of the total number of scattering events. Finally, it is worth
mentioning that the temporal autocorrelation function depends on the geometry
of the experiment only through the boundary conditions as applied to obtain the
probability density function P(s).

In practice, the intensity correlation g(2)(τ) rather than the field autocorrelation
function is measured and it can be shown that the relationship between the two
autocorrelation functions is

g(2)(τ) = 1 + 2βRe{g(1)(τ)}, (12)

where β = 〈Is〉/IF 	 1, with Is and IF being the scattered and background com-
ponents of the detected intensity.

Thus, in order to determine the parameter τ0 describing the dynamic sys-
tem under test, one has direct, experimental access to g(2)(τ) and then determines
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g(1)(τ) via Eq. (12). If the distribution P(s) is known, one can then use Eq. (11)
to determine τ0. Using OPS, the pathlength distribution can be directly mea-
sured, rather than calculated based on diffusion models, and, therefore, the dy-
namic properties of the dynamic system can be inferred without imposing any
assumptions about the diffusive transport of light. This procedure has been im-
plemented for different experimental configurations and some results are reviewed
here.

Typical photon pathlength distributions are illustrated in Fig. 5 for the case
of an aqueous suspension of spherical polystyrene particles, as indicated. As can
be seen, these media belong to scattering regimes in which the photon diffusion
as described by Eq. (3) is not appropriate. In subdiffusive cases like this, nei-
ther classical dynamic light scattering nor the DWS formalism in which P(s) is
determined by diffusion arguments are appropriate, and the direct evaluation of
Eq. (11) should be used to determine τ0. The procedure is exemplified in Fig. 6,
where P(s) functions obtained experimentally are used in Eq. (11) to calculate
g(1)(τ), which is compared with the measured values g(1)(τ).

Starting from Eq. (11) and using the formalism of Laplace transform, one can
evaluate values for the characteristic time τ0. Figure 7 summarizes the compari-
son between these values and the ones obtained by using the solutions for P(s), as
provided by the diffusion approximation for the specific experimental situations.
The zero-error limit—denoted by the horizontal line—is approached as the vol-
ume fraction of scattering centers increases. This is the limit of strong scattering,
where the diffusion approximation is expected to provide an accurate description
of the optical scattering. On the other hand, when the concentration of scatterers
decreases, the procedure based on the solution of the diffusion approximation leads
to increasing errors.

Figure 5 Measured P(s) for suspensions with l* values of 250 (left panel) and 1000
(right panel) µm, respectively. Also shown with continuous lines are the P(s) solutions ob-
tained from the diffusion approximation applied to the corresponding cases of semi-infinite
media.
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Figure 6 Temporal field autocorrelation functions for the same colloidal suspensions as
in Fig. 4. The dots represent the experimental data and the continuous lines are the best
fit obtained by evaluating numerically the Laplace transform of Eq. (11) with measured
P(s) distributions.

Figure 7 The relative error of the experimental value τ
exp
0 with respect to the theoreti-

cal one τ0, for a series of colloidal suspensions characterized by different optical density
parameters s/l*.

As can be seen, in this limit the OPS approach brings a significant improve-
ment over the conventional treatment based on the diffusion model. Of course,
as the scattering strength decreases even more and the single scattering regime is
approached, the signal level reduces and the experimental uncertainties start to be-
come important. This can be understood by noting that Eq. (11), which is used
in combination with the measured P(s) to describe the data, fails to describe the
single scattering limit [24].

It is interesting to remember that in OPS, the measured pathlength distribu-
tion is smeared by the coherence function of the source. This effect is, of course,
more important for small values of the pathlength s. In dynamic multiple light scat-
tering, on the other hand, small s corresponds to long correlation time [as seen in
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Eq. (10)]. This observation makes the OPS-based approach especially appealing
for the study of fast dynamics.

13.4.2 Diffusion at the boundaries

The ability to measure directly the photon pathlength distribution allows one to
study phenomena beyond the classical diffusion approximation. For instance, P(s)
measured experimentally can be used to investigate subtle properties of multiple
light scattering phenomena such as the process of photon diffusion close to inter-
faces. Closed-form solutions to the diffusion equation can be easily obtained for
infinite media and different source-detector geometries. However, when the scat-
tering medium is bounded, special conditions are needed to quantify the energy
density at the interfaces. Through the phenomenon of reflection at the interface,
light is reinjected into the medium and forced to travel a new diffusive path inside
the scattering medium. As the reflectivity increases, this process becomes grad-
ually important and it has to be taken into account in the overall diffusive de-
scription of light propagation in the bounded scattering medium. The diffusion
process at the boundary introduces a new scale length that characterizes the spe-
cific medium interface. This is the extrapolation length that measures the distance
outside the medium where the energy density vanishes linearly. Accurate values of
this length are needed to interpret any experiment based on diffusion of light, and
it is expected that the boundary inhomogeneity should directly affect the photon
pathlength distribution. An appropriate boundary condition is, therefore, desirable
and may extend the applicability of the diffusion model close to the interface. In
general, it is well understood that the extrapolation length depends on the refrac-
tive index mismatch at the boundary but, so far, little has been done to clarify the
potential influence of scattering anisotropy on boundary phenomena [25]. Our
experiments have consistently shown that the extrapolation length ratio depends
not only on the refractive index mismatch, but also on the anisotropy of individual
scattering events.

The problem of semi-infinite random media that has been described in Sect. 2.3
becomes more complex when the reflection at the boundary is taken into account.
This is not possible using the separate Dirichlet-Neuman boundary conditions
because setting the energy density to zero at the interface is incorrect and does not
correspond to the physical situation. When a modified Green’s function was used
to take into account the reflection at the boundary, it has been shown that the effect
of reflection is to lower the effective diffusion coefficient of the medium [26].

The most general approach is to use a mixed boundary condition, which for
a semi-infinite medium can be written as [U – z0l*∂U/∂z]z=0 = 0, where z0 is
called the extrapolated length ratio, since z0lt is the distance outside the medium,
where U extrapolates to zero. Using a partial current technique, it was suggested
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that z0 in Eq. (6) depends only on the reflection phenomenon at the boundaries
and is given by [27]

z0 =
2
3

1 + Reff

1 – Reff
, (13)

where Reff is the effective reflectivity at the interface and can be easily calculated
using the first two moments of the Fresnel coefficient. For a boundary without
reflections, i.e., a totally absorbing interface, z0 takes the value 2/3, which is con-
sistent with the diffusion theory. However, as Reff increases, in situations where
the total internal reflection is present, the value of the extrapolation length ratio
predicted by Eq. (13) can be 2 to 3 times larger. The parameter z0 is of utmost
importance since it solely defines the boundary condition for a given system and
therefore an experimental way to determine the extrapolation length for a given
random medium is highly desirable.

Using OPS, this problem can be systematically investigated. It has been found
that the more refined boundary conditions described in Eq. (13) are still not suffi-
cient to describe the diffusion phenomenon close to the interface [28]. Using the
modifed pathlength distribution, we demonstrated that z0, which uniquely defines
the relationship between the energy density at the boundary and its gradient nor-
mal to the surface, depends not only on the reflectivity at the boundary, but also
on the anisotropy of the single-scattering process. We found that ze, the additional
length scale describing interfacial phenomena, decreases for larger anisotropy fac-
tors when light is detected in a medium of lower refractive index than that of the
scattering medium.

Two types of OPS measurements were performed on water suspension of
polystyrene microspheres with three different scattering anisotropies. First, the re-
flectance was recorded at the water/air interface of the sample. In this case, the
condition for total internal reflection is present, since the backscattered light en-
counters a medium of lower refractive index at the boundary. Then, a layer of oil
was added on top of the scattering medium in order to change the refractive index
contrast at the interface. Typical experimental results are presented in Fig. 8, where
it can be easily observed that the reflection at the boundary changes dramatically
the optical pathlength distribution P(s) of waves in the medium in a sense that the
probability of long optical pathlengths is increased for a highly reflective boundary.
As can be seen, the average penetration depth of light in the medium is consider-
ably increased. The continuous curves in Fig. 8 are the result of data fitting with
the normalized version of the diffusion model given by Eq. (6). Because the trans-
port mean-free path l* and the asymmetry parameter g are known, the only fitting
parameter used is the extrapolation length ratio z0.

The values of z0 calculated with Eq. (13) are 0.68 for the medium/oil inter-
face and 1.67 for the medium/air interface. Therefore, the oil interface simulates
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Figure 8 Measured photon pathelength distributions for media with scattering asym-
metry g = 0.32 (a) and g = 0.92 (b) and for two different interfaces, as indicated. The
solid curves represent the fit with the diffusion.

an almost perfect absorbing plane at the boundary of the scattering medium for
which z0 = 0.67. The experimental values obtained for the medium/oil boundary
are 0.74, 0.73, and 0.76, corresponding to the anisotropy factors of 0.32, 0.49, and
0.92, respectively. These values are slightly different from that of 0.67 predicted
by Eq. (13), and closer to the value of 0.7104 given by the Milne problem for
isotropic scattering. As expected, for this index-matched interface, the anisotropy
does not have a significant effect on z0. However, for the medium/air interface,
the experimental values are 1.57, 1.43, and 1.12, respectively, which are signifi-
cantly different from that of 1.67 calculated with Eq. (13). Thus, the measured
trend for z0 is to decrease as g increases. We obtained experimentally a minimum
value of 1.12 corresponding to g = 0.92. This value is considerably smaller than
the calculated one and it suggests that the anisotropy dependence of the extrap-
olated length ratio becomes stronger at higher values of g. All the values of the
extrapolation length corresponding to media with different asymmetry parameters
are summarized in Fig. 9. The experimental data clearly illustrate the influence of
the boundary properties on the optical pathlength distribution of the backscattered
light.

Also included are the results of a model accounting for the fact that, although
the light transport is essentially diffusive in the bulk, the angular distribution of
waves at the boundary is shaped by the last scattering event. As a result, extrapola-
tion length predicted in Eq. (13) is modified to be

z0 =
C1(Fg) + C2(Fg, R)
C3(Fg) – C4(Fg, R)

, (14)

where the functions Ci depend on R, the angularly dependent Fresnel reflection
coefficient at the interface, and on Fg(θ,ϕ), which represents the angular distri-
bution of light emerging from one last scatterer that is exposed to the incident
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Figure 9 Values for z0 as obtained from (1) the OPS experiment (triangles), (2) a nu-
merical simulation (squares), and (3) from Eq. (13) for reflective boundary conditions
(dotted line) and the z0 as predicted by last scattering-dependent boundary conditions
(continuous line). The data are separated in two groups corresponding to the two inter-
faces, as indicated.

diffusive field. The new extrapolation length ratio depends on the anisotropy fac-
tor in a manner shown in Fig. 9. In the case of isotropic scattering, Fg(θ,ϕ) is
constant and the values for z0 predicted by Eq. (13). In the situation where the
reflection at the boundary is close to zero, z0 has a slight dependence on g in such
a way that increases for higher anisotropy factors. The monotonic behavior of the
function z0(g) for medium/oil interface is reversed with respect to the medium/air
case because now the light exits the sample into a medium with higher index of
refraction. As can be seen in Fig. 9, the z0 values predicted by this new model are
fairly close to the measured and simulated ones.

Due to the high dynamic range of the fiber-optic-based OPS, a broad do-
main of the optical pathlengths is resolved, which allows for a thorough investiga-
tion of the diffusive backscattering light. The pathlength-resolved distribution of
backscattered light, which contains the global effect of reflection at the boundary,
is used to determine the value of z0. In the overall description of the angular dis-
tribution of the backscattered waves, the contribution of the last scattering event
is particularly important. For larger values of the asymmetry parameter g, the total
angular flux impinging on the physical boundary is more peaked forward and un-
dergoes less reflection than in the case of isotropic scatterers, which corresponds to
a smaller value of z0.
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13.5 Conclusion

Multiple scattering of light is encountered in many cases when the dielectric prop-
erties of media are randomly varying in time or space. When the optical radiation
propagates through such inhomogeneous media, the direction and the phase of
the wave are randomized. A detailed description of multiple scattering phenomena
accounting for the full vector characteristics of the electromagnetic waves is quite
a challenging task. In many practical situations, however, the relevant properties
of multiply scattered light can be obtained by simply considering a scalar field of
diffusive photons that satisfy a transportlike equation. In this approach, the scalar
photons travel along various random paths between the source and detector and
accumulate an optical phase that is proportional with the geometrical pathlength s
of each specific trajectory. All the macroscopic, measurable properties of the mul-
tiple scattering phenomenon are therefore determined by the distribution of pho-
ton pathlengths. One can use a random walk description of photon paths and, if a
characteristic length scale—the transport mean-free path l*—is introduced, multi-
ple scattering phenomena can then be alternatively discussed in terms of scattering
orders s/l*.

The probability density P(s) of photon pathlength can be obtained by solving
the transport equation numerically or analytically within various approximations.
When absorption losses are negligible and the average optical path is sufficiently
long, it is straightforward to evaluate P(s) by solving the transport equation in the
diffusion approximation. This is the procedure of choice for most experimental
techniques that rely on multiple light scattering to infer different properties of the
random media. Of course, this approach will fail when scattering is strong, i.e.,
when the characteristic scattering length reduces and becomes of the order of radi-
ation’s wavelength. In this case, the interference effects between multiply scattered
waves cannot be neglected anymore and the concept of optical pathlength should
be carefully examined.

In a number of situations of practical interest, the scattering regime can be clas-
sified as subdiffusive. This is the class of multiple scattering phenomena in which,
due to finite size, absorption, or experimental geometry, the scattering is not suffi-
ciently strong and the isotropic diffusion behavior is not reached before the photons
are detected. A typical example is any backscattering experiment in which a signif-
icant contribution originates from single or low-order scattering events. In these
situations, a direct, experimental determination of P(s) is desirable in order to cor-
rectly interpret the measurements. We have shown here that the optical pathlength
distribution can be obtained in a variety of situations by using the coherence prop-
erties of light to select successive orders of scattering. The technique, called optical
pathlength spectroscopy (OPS), enables us to obtain the probability density P(s)
by normalizing the path-resolved reflectivity obtained in an interferometric mea-
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surement. Subsequently, characteristics such as the average optical pathlength or
higher-order moments can be inferred for a variety of random media. For exam-
ple, when OPS was applied in the context of dynamic scattering, the measured P(s)
permitted to bridge the gap between single and diffusive light scattering and to ex-
tend the applicability of dynamic light scattering techniques to regimes relevant to
many applications in biology, colloidal, and polymer sciences.

The ability to directly determine the photon pathlength distribution enables us
to refine certain aspects of the photon diffusion model. For instance, a problem
of practical relevance in many applications relates to the photon diffusion near the
physical boundaries of the random medium. The OPS approach allowed us to elu-
cidate the subtle effects of the scattering phase function and to establish the correct
boundary conditions, which in turn permitted quantitative description of backscat-
tering experiments. Besides giving a detailed description of different aspects related
to multiple scattering phenomena, OPS could also provide a measure of the field
penetration depth that is important in various light delivery applications, especially
for medical techniques like photodynamic therapy.
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CHAPTER 14

THE DIFFRACTIVE MULTIFOCAL

FOCUSING EFFECT

John T. Foley, Renat R. Letfullin, and Henk F. Arnoldus

14.1 Introduction

It is well known that when a monochromatic plane wave of intensity Io is normally
incident upon a circular aperture, the intensity at on-axis observation points be-
hind the aperture oscillates between the values 4Io and zero as the distance from
the aperture is increased. The reason for this is that the various Fresnel zones in
the aperture contribute either constructively or destructively to the amplitude of
the field at the observation point in question, causing the amplitude to oscillate
between zero and twice the incident field value. For an incident wavelength λ,
aperture radius a, and aperture-plane to observation-plane distance z, the number
of zones that contribute is given by the Fresnel number, N = a2/λz. The maxima
and minima occur at observation points where the Fresnel number is an odd or
even integer, respectively.

What is commonly not recognized is the fact that in the region near the z-
axis, as z is increased, the light is repeatedly focusing and defocusing over and
over again due to diffraction. The focal points occur at positions where the Fresnel
number is an odd integer. This was pointed out in a series of papers by Lit and
coworkers [1–3] and most recently by Letfullin and George [4], who referred
to this phenomenon as the diffractive multifocal focusing of radiation (DMFR)
effect.

Letfullin and George proposed to use a system of two circular apertures for
which the on-axis intensity of an incident monochromatic plane wave would in-
crease dramatically due to the DMFR effect. In their system the second aperture
was located where the Fresnel number of the first aperture was unity. They ana-
lyzed this system theoretically, and showed that the on-axis intensity behind the
second aperture oscillates between maximum values of the order of 10 times that
of the incident wave and minimum values that are very small, but not zero. These
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predictions were verified experimentally [5,6] and extended theoretically to inci-
dent fields with a Gaussian amplitude distribution [7]. In Refs. [4–7] the phase
of the field was not investigated.

In this chapter we investigate the intensity and phase of the diffracted field be-
hind a circular aperture when a monochromatic plane wave is incident upon it, and
when a monochromatic Gaussian beam is incident upon it. We also investigate the
intensity and phase of the diffracted field behind a system of two circular apertures
for the same two incident fields. In each case we substantiate the focusing, defocus-
ing and refocusing interpretation mentioned above, and investigate the intensity at
the focal points.

In Sect. 14.2.1 we show that when a plane wave is incident upon a single cir-
cular aperture, in the neighborhood of a focal point (where the Fresnel number
is odd) the phase of the wave approaching the focal point is that of a converging
wave, the phase front in the focal plane is planar, and the phase of the wave exiting
the focal point is that of a diverging wave. We also show that the wave becomes
more and more divergent as the distance from the focal point is increased, until
a position is reached where the Fresnel number is even. At such a point the in-
tensity of the wave is zero, and the phase of the wave is undefined, i.e., singular.
We show that as the on-axis observation point moves away from the aperture and
passes through a singular point, the nature of the wave in the neighborhood of the
axis changes from that of a diverging wave to that of a converging wave, i.e., the
wave refocuses. In Sect. 14.2.2 we show that when the incident field is a Gaussian
beam, the phase behaves similarly, and the intensities at the focal points decrease
as the ratio of the radius of the aperture to the spot size of the incident beam is
increased.

In Sect. 14.3.1 we use the results of Sect. 14.2 to investigate the intensity and
the phase of the field after the second aperture in a system of two circular aper-
tures when a plane wave is incident. In this case the ratio of the radii of the two
apertures is a key parameter, and we discuss the effect of varying this ratio. In
Sect. 14.3.2, we do the same for a Gaussian beam incident upon a two aperture
system.

We use scalar wave theory throughout this paper. Unlike in Refs. [4] and [7],
where the monochromatic wave equation (the Helmholtz equation) was integrated
numerically, we use the Fresnel approximation and the paraxial approximation in
our calculations.
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14.2 Fresnel Diffraction by a Circular Aperture

14.2.1 Incident plane wave

14.2.1.1 Basic equations

Consider a monochromatic plane wave of amplitude Uo and angular frequency
ω, propagating in the positive z-direction, and normally incident upon an opaque
screen in the plane z = 0, containing an aperture of radius a. The aperture is
centered about the origin. Let P′ = (x′, y′, 0) be a point inside the aperture, and let
P = (x, y, z) be a point in an observation plane z = constant > 0 (see Fig. 1). In
cylindrical polar coordinates we have P′ = (ρ′,θ′, 0) and P = (ρ,θ, z). We assume
a time dependence of exp(–iωt) for the field. The complex amplitude, U(i)(ρ,θ, z),
of the incident field is given by

U(i)(ρ,θ, z) = Uoeikz, (1)

where Uo is a positive constant and k = ω/c is the wave number of the light.
We make the following assumptions. First, that the wavelength λ is much

smaller than the distance z from the aperture plane to the observation plane. Sec-
ond, that the Fresnel number of the observation plane is small, and that the trans-

Figure 1 Geometry for the diffraction of a plane wave from a circular aperture with
radius a. Point P′ = (ρ′, θ′, 0) is a point inside the aperture and P = (ρ, θ, z) is a point in
the observation plane z = constant.



292 The Diffractive Multifocal Focusing Effect

verse distance ρ is less than the aperture radius a and much less than the dis-
tance z. In this case the paraxial form of the Fresnel approximation to the Rayleigh-
Sommerfeld diffraction formula [8] is appropriate for describing the field. The
complex amplitude, U(ρ,θ, z), of the diffracted field can then be written as

U(ρ,θ, z) =
k

2πiz
Uoeikzeikρ2/2z

×
∫ a

0

∫ 2π

0
U(i)(ρ′,θ′, 0)eikρ′2/2ze–ikρρ′cos(θ–θ′)/zρ′dρ′dθ′. (2)

Equation (2) is equivalent to the formula used by Lommel [9] for the case in
which the incident field is a diverging spherical wave.

Let us now simplify this equation. Upon substituting the value of U(ρ′,θ′, 0)
from Eq. (1) into this equation and performing the angular integration, we find
that the complex amplitude of the field is independent of the angle θ and is given
by the expression

U(ρ, z) =
k
iz

Uoeikzeikρ2/2z
∫ a

0
eikρ′2/2zJ0(kρρ′/z)ρ′dρ′, (3)

where J0(x) is the zero-order Bessel function of the first kind. Let us now make the
change of variables ρ′ = ξa. Upon making this change, Eq. (3) can be rewritten
in terms of two dimensionless variables u and v as

U(ρ, z) = –iuUoe
ikzeiv2/2u

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ, (4)

where

u = 2πN, v = 2πNρ/a, (5)

and N is the Fresnel number of the aperture at the on-axis observation point,

N = a2/λz. (6)

Let us now put Eq. (4) into a form more suitable for calculations. It is shown in
Sect. 14.A that in the lit region (where ρ < a and hence v < u) the integral on the
right-hand side of Eq. (4) can be expressed as

∫ 1

0
eiuξ2/2J0(vξ)ξ dξ =

i
u

{
e–iv2/2u – eiu/2[V0(u, v) – iV1(u, v)]

}
, (7)
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where V0(u, v) and V1(u, v) are Lommel functions of two variables:

Vn(u, v) =
∞∑

s=0

(–1)s
(v

u

)2s+n
J2s+n(v). (8)

Upon substituting the right-hand side of Eq. (7) into Eq. (4), the field in the lit
region attains the form

U(ρ, z) = UoeikzM(ρ, z), (9)

where

M(ρ, z) = 1 – eiu/2eiv2/2u[V0(u, v) – iV1(u, v)]. (10)

Equation (9) shows that the diffracted complex amplitude is the product of the
incident field amplitude Uoeikz (i.e., the total field if no aperture were present), and
the function M(ρ, z). We shall therefore refer to M(ρ, z) as the modifier function,
since it describes how the presence of the aperture modifies the field.

The intensity, I(ρ, z), of the field in the lit region is given by

I(ρ, z) = U(ρ, z)*U(ρ, z) = Io|M(ρ, z)|2, (11)

where * denotes the complex conjugate and Io = |Uo|2 is the intensity of the in-
cident field. It follows from Eq. (9) that the phase φ(ρ, z) of the field is given
by

φ(ρ, z) = kz + ψ(ρ, z), (12)

where

ψ(ρ, z) = argM(ρ, z), (13)

and arg denotes the argument of the complex-valued function M(ρ, z). We shall
refer to ψ(ρ, z) as the reduced phase.

14.2.1.2 On-axis intensity and phase

Let us first examine the intensity and phase at on-axis observation points. At such
points, ρ = 0 and hence v = 0. It follows directly from Eq. (8) that V0(u, 0) = 1
and V1(u, 0) = 0. We then find from Eq. (10) that the on-axis modifier function is

M(0, z) = 1 – eiu/2 = 1 – eiNπ, (14)
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where the z-dependence enters through the Fresnel number N. It then follows
from Eq. (11) that the on-axis intensity is given by

I(0, z) = Io
∣∣1 – eiNπ

∣∣2 = 4Iosin2(Nπ/2). (15)

This function is plotted in Fig. 2 over the interval 1 ≤ N ≤ 6. When the Fresnel
number is odd, the intensity is maximum with a value of I(0, z) = 4Io. We will refer
to the corresponding observation points as focal points. When the Fresnel number is
even we have I(0, z) = 0, and we will refer to the corresponding observation points
as singular points because the modulus of the complex amplitude U(0, z) is zero at
such points, and hence its phase is undefined there [10,11].

The expression for the reduced phase can be obtained from Eqs. (13) and (14),
and we find that

ψ(0, z) = arg(1 – eiNπ). (16)

This function is plotted in Fig. 3 over the interval 1 ≤ N ≤ 6. Note that the phase
jumps by π as we pass through the singular points N = 2, 4 and 6.

14.2.1.3 General case

In this section, the intensity and reduced phase in observation planes at a variety
of distances from the aperture will be investigated. For the sake of comparison, let
us first recall the paraxial form for a diverging spherical wave. A spherical wave
emanating from the origin and arriving at the position P in Fig. 1 is described by
the wave function exp(ikr)/r, where r = (ρ2 + z2)1/2. The paraxial approximation
to this function is exp(ikr)/r ≈ exp[ik(z + ρ2/2z)]/z. Upon comparing this equa-
tion to Eq. (9), we see that the paraxial approximation to the reduced phase of this

Figure 2 The on-axis intensity I, in units of Io, as a function of the Fresnel number N.
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Figure 3 The on-axis reduced phase ψ, in units of π, as a function of the Fresnel num-
ber N.

wave is

ψ(ρ, z) ≈ kρ2/2z. (17)

The intensity and reduced phase of the diffracted field along the x-axis in sev-
eral observation planes at different distances from the aperture plane are plotted
in Figs. 4 and 5. The behavior of the field as we travel outward from the aper-
ture plane and pass through a focal point is depicted in Figs. 4(a) through 4(c).
In Fig. 4(a) the Fresnel number is 3.5, and in this plane we see that the reduced
phase near the axis has a curvature with the opposite sign of that of the phase in
Eq. (17). Hence the wave in this plane corresponds to a converging wave. The
on-axis intensity value is approximately 2.0. In Fig. 4(b) the Fresnel number is 3.
This is a focal plane, and we see that the reduced phase is constant near the axis,
i.e., the wave is behaving like a plane wave in this region. The on-axis intensity
value in this case is 4.0. In Fig. 4(c) the Fresnel number is 2.5, and we see that in
this plane the reduced phase near the axis has a curvature with the same sign as the
phase in Eq. (17). Hence the wave corresponds to a diverging wave. The on-axis
intensity value is approximately 2.0.

As we move further away from the aperture plane, the wave near the axis di-
verges more strongly, until we reach the on-axis point where the Fresnel number
is 2.0. At this point the intensity of the field is zero, and its phase is undefined.
Such a point is referred to as a singular point of the field. Figure 4(d) shows the
intensity and phase of the wave in the plane where the Fresnel number is 2.01,
i.e., just before we reach the singular point. The phase near the axis has a steep
upward curvature, corresponding to a strongly diverging wave. The value of the
phase on-axis is approximately –π/2. Figure 5(a) shows the intensity and phase
of the wave in the plane where the Fresnel number is 1.99, i.e., just after we have
passed through the singular point. The phase near the axis has a steep downward
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Figure 4 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along the
x-axis for observation planes with Fresnel numbers: (a) N = 3.5, (b) N = 3, (c) N = 2.5,
and (d) N = 2.01.

curvature, corresponding to a strongly converging wave. The on-axis value of the
phase here is approximately π/2, so as we pass through the singular point, the phase
jumps by π. Figure 5(b) shows that as we continue to move further away from the
aperture plane, the field near the axis starts to converge less strongly. Finally, at
the next focal point, the plane where N = 1.0, we see that the phase near the axis
is again constant; and hence the wave is again behaving like a plane wave. This is
shown in Fig. 5(c). In addition, by comparing Fig. 5(c) to Fig. 4(b), we see that for
focal points further from the aperture plane, the wavefront is planar over a larger
area in the observation plane.

Figure 6 shows the lines of constant phase, φ, in the xz-plane near the N = 2
singular point, for the case a/λ = 50. It is evident from the figure that as the wave
approaches the singular point, it is a diverging wave whose radius of curvature
becomes smaller and smaller. It also follows from the figure that after the wave
has passed through the singular point, it is now a converging wave whose radius of
curvature is increasing.
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Figure 5 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along
the x-axis for observation planes with Fresnel numbers: (a) N = 1.99, (b) N = 1.5, and
(c) N = 1.0.

Figure 6 Lines of constant phase, φ, in the xz-plane near the N = 2 singular point
when a/λ = 50. The transverse coordinate x is in units of a, and the z-coordinate is in
units of the wavelength λ. The value of the phase for each line is labeled in units of π/4.
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14.2.2 Incident Gaussian beam

14.2.2.1 Basic equations

Let the incident field be a Gaussian beam whose waist occurs at the aperture plane
z = 0. The complex amplitude of the incident field is

U(i)(ρ,θ, z) = Uo
wo

w
ei(kz–χ)eikρ2/2Re–ρ2/w2

, (18)

where Uo is a positive constant and wo is the spot size of the beam waist. Here, w
is the spot size in the plane z = constant,

w = wo

√
1 + (z/zR)2, (19)

R is the radius of curvature in that plane,

R = z +
z2

R

z
, (20)

χ is the Gouy phase

tanχ =
z

zR
, (21)

and zR = πw2
o /λ is the Rayleigh length of the beam. It follows from Eqs. (18)–

(21) that the complex amplitude in the plane z = 0 is

U(i)(ρ′,θ′, 0) = Uoe–ρ′2/w2
o . (22)

In order to find the field at the observation point P = (ρ,θ, z), we substitute
the incident field into Eq. (2). After performing the angular integration, we find
that the complex amplitude of the field is independent of θ and is given by the
expression

U(ρ, z) =
k
iz

Uoeikzeikρ2/2z
∫ a

0
e–ρ′2/w2

o eikρ′2/2zJ0(kρρ′/z)ρ′dρ′. (23)

Let us now make the change of variables ρ′ = ξa. Upon making this change,
Eq. (23) can be rewritten in terms of two dimensionless variables u and v as

U(ρ, z) = –iUo2πNeikzeiNπ(ρ/a)2
∫ 1

0
eiuξ2/2J0(vξ)ξ dξ, (24)
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where

u = 2πN + 2iβ2, v = 2πN(ρ/a). (25)

Here, N is the Fresnel number of the aperture at an on-axis observation point,
given by Eq. (6), and

β = a/wo. (26)

We will refer to β as the aperture-spot ratio since its numerical value specifies how
many beam spots would fit across the aperture.

If we now substitute the right-hand side of Eq. (7) into Eq. (24), we find that
the complex amplitude is

U(ρ, z) = UoeikzG(ρ, z), (27)

where

G(ρ, z) =
2πN

u
eiNπ(ρ/a)2

e–iv2/2uM(ρ, z), (28)

and M(ρ, z) is given by Eq. (10). Note, however, that in the present case the vari-
able u on the right-hand side of Eq. (10) is a complex value [see Eq. (25)]. The
intensity of the field in the lit region is given by

I(ρ, z) = |U(ρ, z)|2 = Io|G(ρ, z)|2, (29)

where Io = |Uo|2 is the on-axis incident intensity in the plane z = 0. It follows
from Eq. (28) that the phase of the field is

φ(ρ, z) = kz + ψ(ρ, z), (30)

where

ψ(ρ, z) = argG(ρ, z). (31)

As before, we shall refer to ψ(ρ, z) as the reduced phase.
Equation (27) is a useful way of writing the complex amplitude of the diffracted

field, especially for calculations, but there is an alternative representation that is
interesting. It is shown in Sect. 14.B that

2πN
u

=
wo

w
e–iχ, (32)
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and that

eiNπ(ρ/a)2
e–iv2/2u = eikρ2/2Re–ρ2/w2

. (33)

After substituting the right-hand side of this equation into Eq. (28), and then
substituting that result into Eq. (27) we obtain

U(ρ, z) = Uo
wo

w
ei(kz–χ)eikρ2/2Re–ρ2/w2

M(ρ, z), (34)

which is

U(ρ, z) = U(i)(ρ,θ, z)M(ρ, z), (35)

with U(i)(ρ,θ, z) given by Eq. (18). Equation (35) shows that the diffracted com-
plex amplitude is the product of the incident field complex amplitude and the func-
tion M(ρ, z). Hence, as in the previous section, we shall refer to M(ρ, z) as the
modifier function, since it describes how the presence of the aperture modifies the
field.

14.2.2.2 On-axis intensity and phase

Let us now examine the intensity and phase at on-axis observation points. At such
points, ρ = 0, v = 0, and the corresponding modifier function is given by

M(0, z) = 1 – eiu/2 = 1 – eiNπe–β2
. (36)

It then follows from Eqs. (29) and (28) that

I(0, z) = Io|G(0, z)|2 = Io
4π2N2

|u|2 |M(0, z)|2 = Io
4π2N2

|u|2
∣∣∣1 – eiNπe–β2

∣∣∣2 , (37)

where u is given by Eq. (25).
Figure 7 depicts the on-axis intensity as a function of the Fresnel number

for four different values of the aperture-spot ratio. In all four cases the intensity
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Figure 7 The on-axis intensity I, in units of Io, for β = 0.25 (dashed line), β = 0.50
(thin solid line), β = 0.75 (medium solid line), and β = 1.0 (thick solid line).

is maximum (minimum) when the Fresnel number is approximately odd (even).
These plots show that as the aperture-spot ratio increases, the focusing effect be-
comes weaker: the values of the maximum intensity decrease (as compared to the
value of 4 for the case of an incident plane wave) and the values of the mini-
mum intensity increase (with respect to the value of zero for the incident plane
wave).

It follows from Eqs. (35) and (36) that the on-axis field is

U(0, z) = Uo
wo

w
ei(kz–χ)

(
1 – eiNπe–β2

)
. (38)

The on-axis reduced phase is therefore

ψ(0, z) = arg
[
e–iχ

(
1 – eiNπe–β2

)]
. (39)

It is interesting to notice that when the Fresnel number is an integer, we have
ψ(0, z) = –χ. Figure 8 shows the on-axis reduced phase as a function of the Fres-
nel number for the same four values of the aperture-spot ratio as in Fig. 7. As the
aperture-spot ratio is increased, the size of the phase change decreases.
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Figure 8 The on-axis reduced phase ψ, in units of π, for β = 0.25 (dashed line),
β = 0.50 (thin solid line), β = 0.75 (medium solid line), and β = 1.0 (thick solid line).

14.2.2.3 General case

The intensity and reduced phase of the diffracted field along the x-axis in several
observation planes are plotted in Fig. 9, for the case β = 0.57, i.e., a = 0.57wo.
The behavior of the field as we travel outward from the aperture plane and pass
through a focal plane is depicted in Figs. 9(a) through 9(c). In Fig. 9(a) the Fresnel
number is 3.5. The downward curvature of the phase near the axis shows that
the wave is converging in that region. In Fig. 9(b) the Fresnel number is 3. The
phase is constant near the axis, and hence the wavefront is planar in this region. In
Fig. 9(c) the Fresnel number is 2.5. The upward curvature of the phase shows that
the wave is diverging in this region. The qualitative behavior of the intensity and
phase pictured in Figs. 9(a)–(c) is very similar to the behavior of the intensity and
phase in the plane wave case [see Figs. 4(a)–(c)]. The main difference is that the
peak intensity in the N = 3 focal plane is 2.96 in the present case, and was 4 in the
plane wave case.

As we move further away from the aperture plane, the field continues to di-
verge, until we approach the on-axis position where N = 2 [Fig. 9(d)]. The in-
tensity then goes through a minimum, and the character of the wave changes from
diverging to converging as we pass through this point. The behavior is similar to
that seen at the position where N = 2 in the plane wave case. The present be-
havior is different in that the phase varies continuously as we pass through this
point (see Fig. 8), instead of discontinuously, as it did in the plane wave case (see
Fig. 3).

As we get further away from the aperture plane the wave becomes converging
again. This is illustrated by the plot of the phase in Fig. 9(e), where N = 1.5. The
downward curvature of the phase near the axis means that the wave is converging
in this region. As we approach the point where N = 1, the wavefront flattens out.
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Figure 9 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along the
x axis for observation planes with Fresnel numbers: (a) N = 3.5, (b) N = 3, (c) N = 2.5,
(d) N = 2, (e) N = 1.5, and (f) N = 1. The parameter β is 0.57.

Figure 9(f) shows that the phase is constant near the axis when N = 1; therefore
the wavefront is planar in this region. The character of the wave as we move from
the plane N = 1.5 to the plane N = 1 is similar to that in the plane wave case. The
major difference is that the peak intensity at the N = 1 plane here is 2.94, whereas
for the case of a plane wave it was 4.
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14.3 Fresnel Diffraction by a Bicomponent System of

Apertures

14.3.1 Incident plane wave

14.3.1.1 Basic equations

Let us now consider the two-aperture system depicted in Fig. 10. The radius of
the first aperture is a1, the radius of the second aperture is a2, and the distance
between the planes containing the apertures is L. Let P′′ = (x′′, y′′, L) be a point
inside the second aperture, and P = (x, y, z) be an observation point in the plane
z = constant > L. In cylindrical polar coordinates we then write P′′ = (ρ′′,θ′′, L)
and P = (ρ,θ, z). It follows from Eqs. (9) and (10) that the complex amplitude of
the field incident upon the second aperture is given by

U(ρ′′,θ′′, L) = UoeikL
{

1 – eiu1/2eiv2
1/2u1[V0(u1, v1) – iV1(u1, v1)]

}
, (40)

where u1 = 2πN1, v1 = 2πN1ρ
′′/a1 and N1 = a2

1/λL.
In order to compare our results for the intensity to those of Ref. [4], we now

assume that the distance L is such that N1, the Fresnel number of the first aper-
ture at the center of the second aperture, is equal to unity. In this case, u1 = 2π,

Figure 10 Geometry for the diffraction of a plane wave by a system of two circular
apertures with radii a1 and a2, respectively. The distance between the two aperture planes
is L. Point P′′ = (ρ′′, θ′′, L) is a point inside the second aperture and P = (ρ, θ, z) is a
point in the observation plane z = constant.



John T. Foley et al. 305

v1 = 2πρ′′/a1 and Eq. (40) can be written as

U(ρ′′,θ′′, L) = Uoe
ikL [1 + D(ρ′′/a1)

]
, (41)

where

D(w) = eiπw2
[V0(2π, 2πw) – iV1(2π, 2πw)]. (42)

Let us now investigate the complex amplitude, U(ρ,θ, z), of the diffracted field in
the region z > L. The paraxial form of the Fresnel approximation to the Rayleigh–
Sommerfeld diffraction formula tells us that this field is given by the expression

U(ρ,θ, z) =
k

2πi(z – L)
eik(z–L)eikρ2/2(z–L)

×
∫ a2

0

∫ 2π

0
U(ρ′′,θ′′, L)eikρ′′2/2(z–L)e–ikρρ′′cos(θ–θ′′)/(z–L)ρ′′dρ′′dθ′′.

(43)

Upon substituting the right-hand side of Eq. (41) into Eq. (43) and performing
the angular integration, we find that the field is independent of the angle θ and
given by

U(ρ, z) =
k

i(z – L)
Uoeikzeikρ2/2(z–L)

×
∫ a2

0

[
1 + D(ρ′′/a1)

]
eikρ′′2/2(z–L)J0

[
kρρ′′/(z – L)

]
ρ′′dρ′′. (44)

Let us now make the change of variable ρ′′ = ξa2. After using this relation in
the right-hand side of Eq. (44), we find that the field can be described in terms of
the dimensionless variables u2 and v2 as

U(ρ, z) = –iu2Uoeikzeiv2
2/2u2

∫ 1

0
[1 + D(αξ)]eiu2ξ

2/2J0(v2ξ)ξ dξ, (45)

where

u2 = 2πN2, v2 = 2πN2ρ
′′/a2, (46)

with N2 the Fresnel number of the second aperture at the on-axis point in the
observation plane,

N2 = a2
2/λ(z – L), (47)
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and α the ratio of the radii of the two apertures,

α = a2/a1. (48)

By analogy with the results of Sect. 14.2, let us write Eq. (45) as

U(ρ, z) = UoeikzM(ρ, z), (49)

where

M(ρ, z) = –iu2eiv2
2/2u2

∫ 1

0
[1 + D(αξ)]eiu2ξ

2/2J0(v2ξ)ξ dξ. (50)

It follows from Eq. (49) that the intensity and phase of the field in the lit region
are given, respectively, by Eqs. (11) and (12), with M(ρ, z) given by Eq. (50) and
the reduced phase defined as in Eq. (13). The function M(ρ, z) can be evaluated
by numerical integration.

14.3.1.2 On-axis intensity and phase

The on-axis intensity and reduced phase of the field after the second aperture were
calculated by the method described above, and are plotted as a function of the
Fresnel number N2 for α = 0.1 in Fig. 11, and for α = 0.5 in Fig. 12. One gen-
eral comment is in order before discussing the results. There are no true singular
points behind the second aperture, because even at points where the intensity is
minimum, its value is not exactly zero.

Figures 11 and 12 show the results for α = 0.1 and 0.5, respectively. In both
cases the values of the intensity and the reduced phase oscillate as functions of N2.
Upon comparing the two sets of curves, we see that three changes occur when α

is increased from 0.1 to 0.5. First, the maximum value of the on-axis intensity de-
creases (from approximately 15Io to 8Io), and the minimum value increases (from
approximately zero to Io). Second, the amplitude of the oscillation of the reduced
phase decreases and does not occur so suddenly. Finally, at the smaller value of
α the maxima (minima) of the intensity occur when the Fresnel number is odd
(even), but at the larger value they are shifted to slightly higher values of N2; like-
wise the reduced phase curve is also shifted toward higher values of N2.

The explanation for this behavior is as follows. When α = 0.1, the radius of
the second aperture is 10 times smaller than that of the first. In this case the results
of Sect. 14.2 show that the phase of the field incident upon the second aperture
is constant across it [see Fig. 5(c)], and that the value of the intensity incident
upon it varies by only 10% across it. Therefore the field incident upon the sec-
ond aperture is very similar to the field incident upon the first aperture (a constant
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Figure 11 Plots of I/Io and ψ/π for on-axis observation points as functions of the Fres-
nel number N2 for α = 0.1.

Figure 12 Plots of I/Io and ψ/π for on-axis observation points as functions of the Fres-
nel number N2 for α = 0.5.
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amplitude, normally incident plane wave), and this explains why the second aper-
ture increases the on-axis intensity at the focal points by a factor of close to four,
why the intensities at the minima are approximately zero, and why the phase jumps
are approximately equal to π. As α increases from the value 0.1, the phase of the
field incident upon the second aperture remains approximately constant across it,
but the intensity begins to vary considerably. As a result, the effect of the second
aperture becomes less ideal. When α = 0.5, as in Fig. 12, both the phase and the
intensity of the field incident upon the second aperture vary significantly across it
[see Fig. 5(c)], and the effect of the second aperture is correspondingly less ideal.

14.3.1.3 General case

The intensity and reduced phase of the diffracted field as a function of the scaled
transverse coordinate x/a2 in six different planes behind the second aperture are
shown in Fig. 13 for the case α = 0.4. In Fig. 13(a) the value of the Fresnel
number, N2 = 3.06, was chosen such that the on-axis intensity was maximum, i.e.,
so that the plane is a focal plane. We see from the figure that the phase near the axis
is approximately constant, so that the wave in that region is behaving like a plane
wave. In Figs. 13(b) and 13(c) the Fresnel numbers are 2.5 and 2.37, respectively,
and the wave is diverging in each case. In Fig. 13(d) the Fresnel number is 1.74,
and the wave has changed from a diverging wave to a converging wave, i.e., it
has refocused. In Fig. 13(e) the Fresnel number is 1.5, and the wave continues to
converge. In Fig. 13(f) the Fresnel number is 1.05, and the plane is a focal plane.
The on-axis intensity is maximum, and the phase near the axis is approximately
constant. In Ref. [4] the value of α was 0.4, as it is in Fig. 13. Our results for the
intensities agree well with those of Ref. [4].

14.3.2 Incident Gaussian beam

14.3.2.1 Basic equations

It follows from Eqs. (27), (28), and (10) that the complex amplitude of the field
incident upon the second aperture is

U(ρ′′, L) = UoeikLH(ρ′′/a1), (51)

where

H(w) =
2πN1

u1
eiN1πw2

{
e–iv2

1/2u1 – eiu1/2[V0(u1, v1) – iV1(u1, v1)]
}

. (52)

Here,

u1 = 2πN1 + 2iβ2, v1 = 2πN1w, (53)
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Figure 13 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position along
the x-axis for observation planes behind the second aperture with Fresnel numbers:
(a) N2 = 3.06, (b) N2 = 2.5, (c) N2 = 2.37, (d) N2 = 1.74, (e) N2 = 1.5, and
(f) N2 = 1.05.

and N1 is the Fresnel number of the first aperture at the observation point at the
center of the second aperture,

N1 = a2
1/λL. (54)
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As in the previous section, let N1 = 1. Equation (52) then simplifies to

H(w) =
2π
u1

eiπw2
{

e–iv2
1/2u1 – eiu1/2[V0(u1, v1) – iV1(u1, v1)]

}
, (55)

where u1 = 2π+ 2iβ2, and v1 = 2πw. In order to find the field at the observation
point P = (ρ,θ, z) we substitute this incident field into Eq. (43). Upon perform-
ing the angular integration, we find that the field is independent of the angle θ and
that

U(ρ, z) =
k

i(z – L)
Uoeikzeikρ2/2(z–L)

×
∫ a2

0
H(ρ′′/a1)eikρ′′2/2(z–L)J0[kρρ′′/(z – L)]ρ′′dρ′′. (56)

Let us now make the change of variable ρ′′ = ξa2. After substituting this relation
into the right-hand side of Eq. (56), we find that the field can be described in terms
of the dimensionless variables u2 and v2 as

U(ρ, z) = –iu2Uoeikzeiv2
2/2u2

∫ 1

0
H(αξ)eiu2ξ

2/2J0(v2ξ)ξ dξ, (57)

where

u2 = 2πN2, v2 = 2πN2ρ/a2. (58)

Here, N2 is the Fresnel number of the second aperture at the observation point
(ρ,θ, z),

N2 = a2
2/λ(z – L), (59)

and α is the ratio of the radii of the two apertures [see Eq. (48)]. By analogy with
the results of the previous subsection, let us write Eq. (57) as

U(ρ, z) = Uoe
ikzG(ρ, z), (60)

where

G(ρ, z) = –iu2eiv2
2/2u2

∫ 1

0
H(αξ)eiu2ξ

2/2J0(v2ξ)ξ dξ. (61)

It follows from Eq. (60) that the intensity and phase of the field in the lit region
are given by Eqs. (29) and (30), respectively, with G(ρ, z) given by Eq. (61) and
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the reduced phase defined as in Eq. (31). The function G(ρ, z) can be evaluated
by numerical integration.

14.3.2.2 On-axis intensity and phase

The on-axis intensity and phase behind the second aperture were calculated using
the methods described above. Figure 14 shows plots of the on-axis intensity as
a function of N2 for: (a) an incident plane wave (which corresponds to β = 0),
(b) an incident Gaussian beam with aperture-spot ratio of β = 0.57, and (c) an
incident Gaussian beam with an aperture-spot ratio of β = 1. In all three cases the
value of the ratio of the two aperture radii is α = 0.4. The qualitative behavior of
the three curves is very similar, but there are some differences. The peak intensity
decreases as β is increased. This is to be expected, since a larger β corresponds
to an amplitude distribution in the first aperture that is further from a uniform
amplitude situation. Secondly, as β is increased, the curves shift toward a lower
Fresnel number, i.e., toward the aperture. Finally, the minima are lower for the
larger β cases.

Figure 15 shows plots of the on-axis reduced phase as a function of N2 for
β = 0, 0.57, and 1. The qualitative behavior of the three curves is very similar.
However, as β increases, the curves shift toward lower values of the Fresnel num-
ber, and are shifted downward in numerical value.

14.3.2.3 General case

The intensity and reduced phase of the diffracted field as a function of the scaled
transverse coordinate x/a2 in four different planes behind the second aperture are

Figure 14 The on-axis intensity I(0, z), in units of Io, as a function of the Fresnel num-
ber of the second aperture, N2, for β = 0 (thin line), β = 0.57 (medium thick line), and
β = 1 (thick line), all for α = 0.4.
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Figure 15 The on-axis reduced phase ψ(0, z), in units of π, as a function of the Fresnel
number of the second aperture, N2, for β = 0 (thin line), β = 0.57 (medium thick line),
and β = 1 (thick line), all for α = 0.4.

shown in Fig. 16 for the case α = 0.4. In Fig. 16(a) the Fresnel number is 3.04,
and the plane is a focal plane. The on-axis intensity is maximum, and the phase
near the axis is approximately constant. In Fig. 16(b) the Fresnel number is 2.5,
and the wave is diverging. In Fig. 16(c) the Fresnel number is 1.5, and the wave
has changed from a diverging wave to a converging wave. In Fig. 16(d) the Fresnel
number is 1.04, and the plane is a focal plane. The on-axis intensity is maximum,
and the phase near the axis is approximately constant.

Let us now compare these results to the incident plane wave results. A compar-
ison of Figs. 16(a) and 13(a) shows that the qualitative behavior in the two cases
at the N2 ≈ 3 focal point is very similar. The major difference is a matter of scale:
the curves have similar shapes, but the maximum intensity in the Gaussian beam
case is approximately 7Io instead of the 9Io for the plane wave case. A comparison
of Figs. 16(b) and 13(b) shows that the qualitative behavior in the two cases is very
similar at the location where N2 = 2.5 as well. Similar results are obtained for the
location where N2 = 1.5 when Figs. 16(c) and 13(e) are compared. Finally, the
curves for both the intensity and phase at the N2 ≈ 1 focal point are very similar
as well [see Figs. 16(d) and 13(f)]. As with the N2 ≈ 3 case, the key difference
is the fact that the maximum intensity in the Gaussian beam case is approximately
7Io instead of 9Io for the plane wave case.

14.4 Conclusions

We have investigated the intensity and phase of the diffracted field behind a cir-
cular aperture when a monochromatic plane wave is incident upon it, and when
a Gaussian beam is incident upon it. We have also investigated the intensity and
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Figure 16 Plots of I/Io (thin line) and ψ/π (thick line) as functions of position
along the x-axis for observation planes after the second aperture with Fresnel numbers:
(a) N2 = 3.04, (b) N2 = 2.5, (c) N2 = 1.5, and (d) N2 = 1.04.

phase of the diffracted field in a system of two circular apertures for the same inci-
dent fields.

For the single-aperture system, with a plane wave normally incident, it was
shown that in the neighborhood of a focal point, the phase of the wave approaching
the focal point is that of a converging wave, the phase in the focal plane is planar,
and the phase of the wave exiting the focal point is that of a diverging wave. It was
also shown that the wave becomes more and more divergent as the distance from
the focal point is increased, until a position at which the Fresnel number is even
is reached. At such a point the intensity of the wave is zero, and the phase of the
wave is undefined, i.e., singular. It was shown that as the observation point on-axis
moves away from the aperture and passes through a singular point, the nature of
the wave in the neighborhood of the axis changes from that of a diverging wave to
that of a converging wave, i.e., the wave refocuses.

Similar behavior was observed when a Gaussian beam was normally incident
upon a circular aperture, for the case in which the waist of the Gaussian beam
occurs in the plane of the aperture. It was shown that as β (the ratio of the aperture
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radius to the incident beam waist) increases, the focusing effect becomes weaker,
i.e., the values of the intensities at the focal points decrease. This implies that the
more the incident intensity deviates from a constant value (as we had in the plane
wave case), the weaker the focusing effect is.

The focusing effect was also investigated for a plane wave that was normally
incident upon a two-aperture system, for the case in which the separation between
the two apertures is chosen such that N1 = 1. It was observed, by studying the
phase, that the field focuses, defocuses, and refocuses, as in the one-aperture case.
We found that the effect depended crucially on α, the ratio of the radii of the two
apertures. For α = 0.1, the focusing effect was strong, with the intensities at the
focal point approximately 15Io. This was due to the fact that, since N1 = 1, the
intensity and phase of the field incident upon the second aperture were both fairly
constant. As α increases and the intensity incident upon the second aperture varies
across it, the focusing effect becomes weaker (the peak intensities decrease) and the
positions of the focal points shift slightly. Similar behavior was also observed when
a Gaussian beam was normally incident upon a two-aperture system, for the case
in which the separation between the two apertures is chosen such that N1 = 1. As
in the single-aperture Gaussian beam case, it was found that increasing β resulted
in a weaker focusing effect.

14.A Derivation of Equation (7)

It is convenient to consider the real and imaginary parts of the integral on the
left-hand side of Eq. (7) separately. We set∫ 1

0
eiuξ2/2J0(vξ)ξ dξ = 1

2[C(u, v) + iS(u, v)], (A1)

where

C(u, v) = 2
∫ 1

0
cos(uξ2/2)J0(vξ)ξ dξ, (A2)

S(u, v) = 2
∫ 1

0
sin(uξ2/2)J0(vξ)ξ dξ. (A3)

These two integrals can be expressed in terms of the Lommel functions of two
variables V0(u, v) and V1(u, v),12

C(u, v) =
2
u

[
sin(v2/2u) + sin(u/2)V0(u, v) – cos(u/2)V1(u, v)

]
, (A4)

S(u, v) =
2
u

[
cos(v2/2u) – cos(u/2)V0(u, v) – sin(u/2)V1(u, v)

]
. (A5)
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Upon substituting the right-hand sides of Eqs. (A4) and (A5) in to Eq. (A1), we
find ∫ 1

0
eiuξ2/2J0(vξ)ξ dξ =

i
u

{
e–iv2/2u – eiu/2[V0(u, v) – iV1(u, v)]

}
, (A6)

which is Eq. (7).

14.B Derivation of Equations (32) and (33)

It follows from Eq. (25) that

u
2πN

= 1 + i
β2

Nπ
. (B1)

Upon using Eqs. (6) and (26) we find that

u
2πN

= 1 + i
z

πw2
o /λ

= 1 + i
z

zR
=
√

1 + (z/zR)2eiχ =
w
wo

eiχ, (B2)

where w and χ are given by Eqs. (19) and (21), respectively. Equation (32) is the
reciprocal of Eq. (B2).

It follows from Eq. (25) that

i
(

Nπρ2

a2 –
v2

2u

)
= i

Nπρ2

a2

(
1 –

1
1 + iβ2/Nπ

)
= –

ρ2

a2

β2

1 + iβ2/Nπ

= –
ρ2/w2

o

1 + iz/zR
= –

ρ2

w2 + i
kρ2

2R
, (B3)

where w and R are given by Eqs. (19) and (20). Equation (B3) then gives Eq. (33).
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CHAPTER 15

YOUNG’S INTERFERENCE

EXPERIMENT:
THE LONG AND SHORT OF IT

Taco D. Visser

Dedicated to Emil Wolf, in great appreciation of his friendship.

15.1 The Legacy of Thomas Young

The traditional view of Thomas Young (1773–1829) is that of an underappreci-
ated genius. He was a child prodigy who could read fluently at the age of two and
widely read the classics. By the age of 14 he was acquainted with Latin, Greek,
French, Italian, Hebrew, Arabic, and Persian. Because of his many talents and
wide-ranging interests, his fellow students in Cambridge nicknamed him “Phe-
nomenon Young.” After his formal education he set up a medical practice in Lon-
don, but spent most of his time doing research. His initial interest was in sense
perception, and he was the first to realize that the eye focuses by changing the
shape of the lens. He also discovered the cause of astigmatism, and was the ini-
tiator, together with Helmholtz, of the three-color theory of perception, believing
that the eye constructs its sense of color using only three receptors, for red, green
and blue. In spite of all these achievements, his practice never flourished.

He also worked on deciphering the hieroglyphic text on the Rosetta Stone. He
was the first to point out that the cartouches (the oval figures enclosing hieroglyphs)
indicate the names of royalty. Nevertheless, all the credit for solving the mysteries
of hieroglyphic writing went to the Frenchman Champollion.

Likewise, Young’s seminal work on optics, which we will later discuss in more
detail, was largely dismissed by his compatriots. In those days, any theory that went
against the views of Newton was simply unacceptable to them. His main recog-
nition came posthumously. As his epitaph in Westminster Abbey states, Thomas
Young was “a man alike eminent in almost every department of human learning.”

319
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Figure 1 Thomas Young (1773–1829).

The modern-day view of Young is somewhat different. His contributions to
Egyptology were not as grand as previously thought: most of his suggestions in
this field were either not new at all or simply completely wrong [1]. In addition,
his lack of success as a practitioner of medicine is today attributed to his total lack
of bedside manner. His contributions to physics, however, are today considered to
be in a class of their own. Regardless of the merits of his other activities, Thomas
Young is rightfully immortalized by the experiment that now bears his name. In a
lecture held for the Royal Society in 1803, he described how, by placing a card in
a beam of light, it was split into two parts that resulted in a diffraction pattern that
disappeared when one of the parts was obscured. In his own words;

It will not be denied by the most prejudiced that the fringes are produced by the interference of
two portions of light [2].

Better known today is his two-slit experiment (see Fig. 2) in which the light ema-
nating from the slits when projected onto a screen a diffraction pattern of alternat-
ing dark and bright fringes is observed [3]. The analogy between this experiment
and the behavior of water waves clearly demonstrates the wavelike character of
light.

Another great contribution was Young’s suggestion that light vibrations, un-
like sound waves, are transverse. This idea was confirmed in a series of beautiful
experiments by Fresnel.

Recently, a poll was held among physicists asking them what they thought was
the most beautiful physics experiment ever performed [4]. If the experiments are
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Figure 2 Young’s illustration of two interfering waves, taken from Ref. [3].

ranked according to the number of times that they were cited, the result is the
following:

1. Young’s double-slit experiment applied to the interference of electrons by
Jönsson (1961).

2. Galileo’s experiment on falling bodies (ca. 1590).
3. Millikan’s oil-drop experiment (1909).
4. Newton’s decomposition of sunlight with a prism (1665–1666).
5. Young’s light-interference experiment (1803).
6. Cavendish’s torsion-bar experiment (1798).
7. Eratosthenes’ measurement of the earth’s circumference (ca. 250 BC).
8. Galileo’s experiments with rolling balls down inclined planes (ca. 1608).
9. Rutherford’s discovery of the nucleus (1911).

10. Foucault’s pendulum (1851).

This result shows the historical importance of Young’s experiment, both in its orig-
inal form using light, and in its more recent version using electrons [5], which
elegantly demonstrates the wave character of particles.

15.2 New Physics with Young’s Experiment

To this very day, Young’s experiment remains a source of inspiration to physicists
who keep finding new ways to explore the subtleties of interference. Many exam-
ples of this can be found in a recent theme issue of the Philosophical Transactions of
the Royal Society of London, the same society where Young lectured on his discoveries
in optics, dedicated to interference phenomena [6].

Particularly in optical coherence theory, Young’s experiment plays a crucial role.
It was pointed out by Zernike [7] that the visibility of the interference fringes
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that are produced in such an experiment is a direct measure of the correlation
properties of the field that is incident upon the pinholes. Among recent examples
of the relevance of Young’s experiment for coherence theory is Ref. [8] in which
it was predicted that when partially coherent fields are used significant spectral
changes may occur in the observed field. These spectral changes can in turn be
used to determine the state of coherence of the incident field [9]. These examples
underline the importance of Young’s work for present-day research.

In the remainder of this paper we will discuss several novel effects in Young’s
experiment. Sections 15.3 and 15.4 are concerned with field correlations in the
far zone, i.e., far away from the screen containing the pinholes. In Sect. 15.5 and
Sect. 15.6 new properties of the field in the near zone, i.e., in and around the screen,
are investigated.

15.3 Field Correlations in the Far Zone of

Young’s Experiment

Consider a plane screen A, containing two pinholes Q1(r1) and Q2(r2) (see
Fig. 3). The origin O of the coordinate system is taken in the screen, midway
between the two pinholes, which are separated by a distance d, i.e.,

r1 = (d/2, 0, 0), (1)

r2 = (–d/2, 0, 0). (2)

We assume that the field that is incident upon the pinholes is partially coherent.
A question arises naturally: is the field in the region of superposition everywhere par-
tially coherent? To answer this question, we introduce a quantitative measure of the
strength of the field correlations at the pair of observation points P1(r1), P2(r2) at

Figure 3 Illustrating the notation of Young’s experiment.
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frequency ω. This quantity is the spectral degree of coherence [10, Sect. 4.3.2], which
is defined as

µ(r1, r2,ω) =
W(r1, r2,ω)√

S(r1,ω)S(r2,ω)
, (3)

where the cross-spectral density is given by the expression

W(r1, r2,ω) =
〈
U*(r1,ω)U(r2,ω)

〉
. (4)

In Eq. (4), U(ri,ω) represents the scalar field at position ri (i = 1, 2), the asterisk
denotes the complex conjugate, and the angular brackets denote the average taken
over an ensemble of monochromatic realizations. The spectral density of the field at
a position r at frequency ω is given by the diagonal element of the cross-spectral
density, viz.,

S(r,ω) = W(r, r,ω). (5)

Let us now examine the spectral degree of coherence in the far zone of a Young’s
interference experiment. The field at the observation point P1(r1) is given by the
sum of the field contributions of the two pinholes, i.e.,

U(r1,ω) = –
ikA
2π

[
U( r1,ω)

eikR11

R11
+ U( r2,ω)

eikR21

R21

]
, (6)

where Rij denotes the distance QiPj (i, j = 1, 2), k = ω/c is the wavenumber as-
sociated with frequency ω, c being the speed of light, and A is the area of each
pinhole. The prefactor on the right-hand side of Eq. (6) stems from the Huygens–
Fresnel principle [11, Sect. 8.8].* In a similar manner we find that

U(r2,ω) = –
ikA
2π

[
U( r1,ω)

eikR12

R12
+ U( r2,ω)

eikR22

R22

]
. (7)

To simplify our notation, we introduce the abbreviation

Kij =
eikRij

Rij
. (8)

We first turn our attention to pairs of points that lie in the plane x = 0, i.e., the
plane that bisects the line joining the two pinholes and is perpendicular to the
* It is to be noted that the inclusion of obliquity factors in our analysis would not affect our results;

cf. [12].
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screen:

r1 = (0, y1, z1), (9)

r2 = (0, y2, z2). (10)

For such points we clearly have that

K11 = K21, (11)

K12 = K22. (12)

On substituting from Eqs. (6) and (7) into Eq. (4), while making use of Eqs. (11)
and (12), we obtain the expression

W(r1, r2,ω) =
( kA

2π

)2
K*

11K22

×
{

S1(ω) + S2(ω) + 2
[
S1(ω)S2(ω)

]1/2�µ12(ω)
}

, (13)

where

S1(ω) = W(r1, r1,ω), (14)

S2(ω) = W(r2, r2,ω), (15)

are the spectral densities of the field at pinholes Q1 and Q2, respectively, � denotes
the real part, and

µ12(ω) =
〈U*(r1,ω)U(r2,ω)〉√

S1(ω)S2(ω)
(16)

is the spectral degree of coherence of the field at the two pinholes. Also, on substi-
tuting from Eqs. (6) and (7) into Eq. (5), while again using Eqs. (11) and (12),
we obtain the formulae

S(r1,ω) = |K11|2
{

S1(ω) + S2(ω) + 2
[
S1(ω)S2(ω)

]1/2�µ12(ω)
}

, (17)

S(r2,ω) = |K22|2
{

S1(ω) + S2(ω) + 2
[
S1(ω)S2(ω)

]1/2�µ12(ω)
}

. (18)

Combining Eqs. (13), (17), and (18), we find for the spectral degree of coherence
the expression

µ(r1, r2,ω) =
K*

11K22

|K11||K22| , (19)
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and hence

|µ(r1, r2,ω)| = 1. (20)

That is, the spectral degree of coherence of the field at any two points in the plane x = 0
is unimodular, irrespective of the state of coherence of the field that is incident upon the two
pinholes.

We next consider pairs of points that are each other’s mirror image with respect
to the plane y = 0, i.e.,

r1 = (x1, y1, z1), (21)

r2 = (x1, –y1, z1). (22)

Obviously, for such points we have

K11 = K12, (23)

K21 = K22. (24)

On substituting from Eqs. (6) and (7) into Eq. (4), while using Eqs. (23) and (24),
we obtain the expression

W(r1, r2,ω) =
( kA

2π

)2{|K11|2S1(ω) + |K22|2S2(ω)

+ 2
[
S1(ω)S2(ω)

]1/2�[K*
11K22µ12(ω)

]}
. (25)

On substituting from Eqs. (6) and (7) into Eq. (5), while again using Eqs. (23)
and (24), we find that

S(r1,ω) = S(r2,ω) (26)

=
( kA

2π

)2{|K11|2S1(ω) + |K22|2S2(ω)

+ 2
[
S1(ω)S2(ω)

]1/2�[K*
11K22µ12(ω)

]}
. (27)

Substituting from Eqs. (25), (26) and (27) into definition (3) yields the result

µ(r1, r2,ω) = 1. (28)

Stated in words, the spectral degree of coherence of the field at two points that are each
other’s mirror image with respect to the plane y = 0, is always unity, i.e., the field at P1
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and P2 is fully coherent and cophaseal, irrespective of the state of coherence of the field at
the two pinholes.

This result has a clear physical meaning: according to the spectral interference
law [10, Sect. 4.3.2], if the light at P1 and P2 is combined (for example, by cou-
pling the light into two fiber tips) and used in a second Young’s experiment, the
resulting interference pattern will have fringes with perfect visibility.

We emphasize that the surprising results expressed by Eqs. (20) and (28) also
hold in the limiting case when each pinhole is illuminated by a separate laser. It is to
be noted that taking obliquity factors into account does not alter the outcome of our
analysis (for a proof of this, see [12]). Moreover, these results have recently been
generalized to the case of partially coherent, partially polarized electromagnetic
beams [13].

15.4 Phase Singularities of the Coherence

Function in the Far Field

In the previous section it was demonstrated that in a Young’s interference exper-
iment with partially coherent light there exist pairs of points at which the light is
fully coherent. We now turn our attention to the other extreme, and ask ourselves
the question: are there pairs of points in the region of superposition that are completely un-
correlated? To simplify our analysis we assume that the spectral density of the field
at the two pinholes is identical, i.e.,

S1(ω) = S2(ω). (29)

Under this assumption the cross-spectral density at an arbitrary pair of observation
points is given by the expression

W(r1, r2,ω) =
( kA

2π

)2
S1(ω)

{
K*

11K12 + K*
21K22

+ µ12(ω)K*
11K22 + µ*

12(ω)K*
21K12

}
, (30)

where we have used Eqs. (6) and (7). In the far zone the factors Kij have the
approximate form

Kij ≈ exp[ik(Rj – r̂j · ri)]
Rj

, (31)

where Rj = |rj| is the distance from the origin to the point of observation Pj, and
r̂j is a unit vector pointing in the direction OPj. On substituting from Eq. (31)
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into Eq. (30) we find that

W(r1, r2,ω) = 2
( kA

2π

)2
S1(ω)

exp[ik(R2 – R1)]
R1R2

×
{

cos
[kd

2
(cosθ1 – cosθ2)

]
+ |µ12(ω)|cos

[kd
2

(cosθ1 + cosθ2) + β
]}

, (32)

where θi is the angle between r̂i and the positive x-axis, and β is the phase of
µ12(ω). It is readily seen that Eq. (32) implies the existence of phase singulari-
ties, i.e., pairs of points at which the cross-spectral density vanishes. In particu-
lar, W(r1, r2,ω) vanishes at points for which the expression in the curly brackets
vanishes (see in Fig. 4). The expression in the curly brackets in Eq. (32) is inde-
pendent of the distances R1 and R2, and in fact depends only on the directions of
observation. It follows that a given zero of the cross-spectral density requires that
the observation points P1 and P2 both lie on conical surfaces cosθi = constant; a
sketch of such surfaces is given in Fig. 5.

After substituting from Eq. (32) into Eq. (5), we find that the spectral density
in the region of superposition can only have zero values for fully coherent fields,
i.e., for fields for which |µ12(ω)| = 1. Therefore, it follows from Eq. (3) that for
partially coherent fields the zeros of the spectral degree of coherence µ(r1, r2,ω)
coincide with those of the cross-spectral density. The behavior of the phase of the
spectral degree of coherence in the immediate vicinity of the conical zero surfaces
can be readily found by noting that the expression in the curly brackets of Eq. (32)
is real-valued, so that the only possible phase change of this factor on changing the

Figure 4 Some roots of the function f (θ2) = cos[(kd/2)(cosθ1 – cosθ2)] +
|µ12(ω)|cos[(kd/2)(cosθ1 + cosθ2) + β]. In this example k = 0.333 × 107 m–1,
d = 0.1 cm, µ12(ω) = 0.8 + 0.3 i, and θ1 = π/2.
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angles θ1 or θ2 is a change in sign. This corresponds to a jump in phase of ±π,
and these are the only possible singular behaviors across the singular surfaces.

The spectral degree of coherence in the region of superposition was studied
numerically using Eqs. (29), (30), and (3), i.e., without the approximations that
lead to Eq. (32). Let the position of the two field points P1(r1) and P2(r2) be
denoted by

r1 = (x1, y1, z1), r2 = (x2, y2, z2), (33)

respectively. The phase, φµ(r1, r2,ω), of the spectral degree of coherence was
calculated for the case in which x2 is varied while y2, z2, and r1 are kept fixed.
An example of its discontinuous behavior is depicted in Fig. 6. The change by an
amount ±π of the phase across a phase singularity is clearly seen.

Figure 5 Schematic illustration of surfaces on which points of observation P1(r1) and
P2(r2) in the far zone are located for which W(r1, r2, ω) = µ(r1, r2, ω) = 0.

Figure 6 Illustrating the discontinuous behavior of the phase φµ of the spectral de-
gree of coherence across a phase singularity. In this example r1, y2, and z2 are kept fixed
while x2 is varied. Here k = 0.333 × 107 m–1, d = 0.1 cm, µ12(ω) = 0.8 + 0.3 i,
r1 = (0, 0, 1.5) m, y2 = 0.9 mm, and z2 = 1.5 m.
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We have also studied the phase of the spectral degree of coherence in a plane
parallel to the screen that contains the apertures. An example is shown in Fig. 7.
The vertical line indicates the location of a phase singularity, i.e., a set of points
P2(r2) for which µ(r1, r2,ω) = 0, and hence the phase of the spectral degree
of coherence is singular. Four pairs of contour lines show the discontinuity of the
phase φµ across the phase singularity. In all four cases the phase undergoes a jump
equal to ±π, in agreement with the asymptotic behavior predicted by Eq. (32).

We note that the phase singularities of the spectral degree of coherence can
easily be observed. Detecting the phase change requires interfering the light from
the vicinity of the pair of points P1 and P2. This can be done by coupling the
light from these points into another Young’s interference experiment (for example,
by using optical fibers) and observing the behavior of the spectral interference
fringes produced in this secondary experiment as the point P2 is moved across
the phase singularity (see Fig. 8). In Fig. 9 the fringe patterns shown would be
observed in this secondary experiment for a selection of points P1, P2. The point
P1(r1) was chosen as in Fig. 7, and the point P2 was taken along a line of constant
phase at several points in the vicinity of the phase singularity; the choices of P2

(A, B, C, D, and E) are illustrated in Fig. 7. It can be seen in Fig. 9 that the π phase
change results in the minima of the secondary fringe pattern becoming maxima,
and vice versa, in accordance with the spectral interference law [10, Sect. 4.3.2].

Figure 7 Contours of equal phase of the spectral degree of coherence µ(r1, r2, ω) near
a phase singularity (the vertical line) in a plane parallel to the screen. In this exam-
ple k = 0.333 × 107 m–1, d = 0.1 cm, µ12(ω) = 0.8 + 0.3 i, r1 = (0, 0, 1.5) m, and
z2 = 1.5 m (after [14]).
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Figure 8 Combining the light from the two observation points P1 and P2 in a secondary
Young’s interference experiment using fibers. The end points of the fibers act as point
sources situated in a second screen B. The visibility of the resulting interference fringes on
a third screen C changes as the point P1 is kept fixed while P2 is scanned across a phase
singularity of µ(r1, r2, ω).

Figure 9 Illustrating the spectral interference pattern formed along the x-direction by
combining the light from the two observation points P1 and P2 in a secondary Young’s
interference experiment. The observation plane was taken to be at z = 1.5 m, and the
spacing of the pinholes taken to be d = 0.1 cm. The positions A, B, C, D, and E of the
points P2 are illustrated in Fig. 7. S0 is the spectral intensity normalized to the value of the
spectral intensity on the curve C.

15.5 Phase Singularities of the Poynting Vector near

the Screen

In most discussions of Young’s interference experiment the precise nature of the
screen is conveniently omitted. In this section we investigate the field in the vicin-
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ity of subwavelength apertures in a realistic screen, i.e., a screen with a finite thick-
ness and a finite conductivity. Not only does our analysis reveal new effects such
as the creation and annihilation of phase singularities of the Poynting vector, but
it also shows that in certain cases the two apertures can strongly influence each
other through surface plasmons that are generated on the screen. The latter will be
discussed in Sect. 15.6.

We first study a single, infinitely long slit in a thin metal plate. The slit runs
in the y-direction. The incident field, taken to have time dependence exp(–iωt),
propagates in the positive z-direction, perpendicular to the plate. In this case, a
scalar approach, as was used in the previous sections, does not suffice, so rigorous
electromagnetic theory must be used to obtain the field. Specifically, the following
integral equation for the electric field [15] has to be solved:

Êi(x, z) = Ê(inc)
i (x, z) – iω�ε

∫
D

ĜE
ij (x, z; x′, z′)Êj(x′, z′) dx′ dz′, (34)

where �ε = ε0 – εplate is the difference between the vacuum permittivity and the

permittivity of the metal plate, Ĝ
E

is the electric Green’s tensor pertaining to the
plate without the slit, and Ê(inc)

i is the ith component (i = x, y, z) of the incident
field, i.e., the field that is present when there is no slit in the plate. The integration
is over the domain D of the slit. For points which lie within the slit, Eq. (34) is a
Fredholm equation of the second kind for Ê, which can be solved numerically by
the collocation method with piecewise-constant basis functions. The electric field at
observation points outside the domain of the slit is then calculated by substituting
this solution back into Eq. (34). With the electric field determined everywhere, the
magnetic field Ĥ follows directly from Maxwell’s equations.

We are interested in the singular optics behavior of the real-valued, two-
dimensional time-averaged Poynting vector field,

S(x, z) =
1
2
�
{

Ê(x, z) × Ĥ
∗
(x, z)

}
. (35)

The phase φS of the Poynting vector is given by the pair of relations

sinφS(x, z) ≡ Sz(x, z)
|S(x, z)| ,

cosφS(x, z) ≡ Sx(x, z)
|S(x, z)| . (36)

It follows from these equations that φS(x, z) is singular at those points where
S(x, z) = 0.
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An example of the power flow field (i.e., the time-averaged Poynting vector)
near a narrow slit in a thin silver plate is shown in Fig. 10. In this example the in-
cident field is taken to be TE polarized (i.e., the Ê field is parallel to the slit). It is
seen that the field exhibits several phase singularities, namely vortices and saddles.
In addition, the aperture is seen to have a funnel-like effect on the field, corre-

Figure 10 Behavior of the time-averaged Poynting vector near a 200-nm-wide slit in
a 100-nm-thick silver plate with refractive index n = 0.05 + i2.87. The incident light
(coming from below) has a wavelength λ = 500 nm. The left-handed vortices (a and d)
and the right-handed optical vortices (b and c) each have a topological charge of +1,
whereas the topological charge of the saddle points (e and f) is –1. The color coding
indicates the modulus of the (normalized) Poynting vector (see legend).

Figure 11 Behavior of the time-averaged Poynting vector when the slit width is in-
creased to 250 nm. The two vortices a and b remain, whereas the four phase singularities
c, d, e, and f that were visible in Fig. 10 have annihilated each other.
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sponding to an enhanced light transmission [16]. When the slit width is increased
in a continuous manner, the four singularities below the slit (c, d, e, and f) move
together and eventually annihilate each other. In this process topological charge
is conserved. As can be seen from Fig. 11, the annihilation results in a smoother
power flow field, corresponding to a greater power transmission. Further examples
of such creation and annihilation events are given in [17]. The relation between
such events and the onset of guided modes within the slit is discussed in [18].

15.6 Surface Plasmons on the Screen and the Light

Transmission Process

When the incident field is TM polarized (i.e., when the Ê field is perpendicular to
the slit), surface plasmons may be generated [19]. These are electromagnetic fields
that travel along the interface between a metal and a dielectric. The field component
normal to the interface decays exponentially. Because the surface plasmon decay
length on the interface (i.e., the propagation distance over which the amplitude of
the fields decreases by a factor 1/e) is much larger than the skin depth of the metal,
it is possible for plasmons that are generated at one slit in the screen to travel to
another slit. When a plasmon exchanges momentum with the screen, for example
at a slit, it can be converted into a propagating light field. There are conflicting
reports in the literature on whether the generation of plasmons actually helps or
frustrates the light transmission process [20,21]. In this section we demonstrate
some unexpected consequences of plasmon excitation for the light transmission
through two narrow slits.

The two-slit configuration that we analyzed is depicted in Fig. 12. A metal plate
of thickness d with two parallel slits is illuminated by a plane, monochromatic, TM
polarized wave that is normally incident upon it. The slits each have a width w and
are separated by a distance b. The plate is surrounded by vacuum. Let us write the
complex-valued relative permittivity of the metal plate as

εm = ε′
m + iε′′

m, (ε′
m,ε′′

m ∈ �) (37)

and the complex-valued wavenumber of the plasmon along the interface as

kx = k′
x + ik′′

x , (k′
x, k′′

x ∈ �). (38)

One can then derive the plasmon dispersion relation [19]

k′
x =

ω

c

( ε′
m

ε′
m + 1

)1/2
, (39)
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with c the speed of light in vacuum. Using the integral equation formalism de-
scribed in Sect. 15.5 we have analyzed the light transmission process for two par-
allel narrow slits. First, for TM polarized incident light the amplitude of the field
along a cross section was calculated some distance away from the slits. In Fig. 13
the exponential fall off of Ez, the electric field component normal to the two in-

Figure 12 A two-slit configuration. Surface plasmons can be generated on both sides of
the plate. When a plasmon that is excited at one slit reaches the other slit, it can be reflected
or converted into a propagation wave field.

Figure 13 The transverse field profile |Ez|2 (in arbitrary units), showing the exponential
fall off of the field amplitudes normal to the interfaces that is typical of a surface plasmon.
In this example the cross section is taken at a distance of two wavelengths from the nearest
slit. The two slits are both 30-nm wide. The silver plate has a thickness of 100 nm, and its
permittivity εm = (0.05 + i2.87)2. The slit spacing is 450 nm. The incident TM field,
traveling in the positive z-direction, has a wavelength λ = 500 nm.
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terfaces, that is characteristic for surface plasmons can be seen. We conclude that
plasmons are indeed generated. (Note that for TE polarized light the amplitude of
Ez is zero everywhere.)

In Fig. 14 the light transmission of a two-slit system is shown as a function of
the separation distance b between the two slits (cf. [22]). For TE polarized light,
no plasmons are generated and the spacing hardly affects the field transmission. For
TM polarized light, however, a very strong modulation of the light transmission
can be seen. The modulation period coincides exactly with the plasmon wavelength
λsp = 2π/k′

x, with k′
x given by Eq. (39). Clearly, the plasmons that are generated

at each of the two slits and travel toward the other can interfere with each other
either constructively or destructively. In the former case they give rise to enhanced
transmission (i.e., a transmission greater than one); in the latter case they cause
frustrated transmission (i.e., a transmission smaller than one).

We conclude that for TM polarized light, the light transmission through two
narrow parallel slits is dominated by the effect of surface plasmons. In contrast
to claims in the literature (Refs. [21] and [22]), they can either give rise to an
enhanced transmission or to a frustrated transmission. The effect of this surface
plasmon-induced transmission depends on the spacing between the two slits. Experi-
mental verification of this prediction has already taken place.

Figure 14 The light transmission for a two-slit system as a function of the separation
distance b between the two slits. For TE polarized light no plasmons are generated, in
contrast to the TM case. The transmission is normalized to the intensity that is incident
onto the two slits according to geometrical optics.
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15.7 Conclusions

We have predicted several new effects in Young’s interference experiment. When
the experiment is carried out using partially coherent light, there exist pairs of
points in the region of superposition where the field is fully coherent, irrespective
of the state of coherence of the field that is incident upon the two pinholes. Also,
there are pairs of points that are completely incoherent. These points correspond to
phase singularities of the spectral degree of coherence. This quantity undergoes a
π phase jump across the singular surfaces. It was discussed how these singularities
can be observed using a secondary Young’s experiment.

In the vicinity of the screen that contains the apertures, the time-averaged
Poynting vector exhibits a rich variety of phase singularities. The nature and loca-
tion of these singularities depend on the thickness and conductivity of the screen.
When a parameter of the configuration, for example, the width of the slits is varied
in a continuous way, annihilation or creation of these singularities may occur. The
total topological charge is conserved in such events.

We have analyzed the role of surface plasmons that can be generated on metallic
screens. It was found that, due to their long propagation distance, they may lead
to “cross talk” between the two apertures. Depending on the distance between the
apertures, the plasmons can give rise to a light transmission that is either enhanced
or frustrated. Experiments that validate these predictions have already taken place.
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CHAPTER 16

QUALITATIVE DESCRIPTION OF

THE WOLF EFFECT AND

DIFFERENCES BETWEEN THE

DOPPLER AND THE WOLF SHIFTS

Valerian I. Tatarskii

16.1 Introduction

In the papers of Emil Wolf [1,2] a statement that at first seems paradoxical but
becomes evident after simple analysis, was formulated. The statement is that the
spectrum of a source depends on its spatial coherence properties. This phenom-
enon was later called the “Wolf effect.”

In this paper we present a simple physical picture explaining the influence of
spatial coherence on the spectrum, and on the basis of this explanation we analyze
the differences between the Doppler and the Wolf shifts. For the simplest illustra-
tion of the role of spatial coherence, in this paper we compare two limiting cases:
the completely spatially coherent and completely spatially incoherent cases. This
paper is not a review, but rather a qualitative physical picture of the Wolf effect,
based on the ideas in Ref. [3]. The models considered in this paper are rather
simple, perhaps even oversimplified, and do not pretend to be a comprehensive
description of the subject, which can be found in the review paper [5] and in the
book [4].

In Sect. 16.2 we consider the Young experiment, but starting with Sect. 16.3
we analyze the case of radiation, which is produced by the plane circular disk. We
consider the cases of completely spatially coherent sources, and the cases of wide,
narrow, and discrete spectral lines. Sect. 16.4 is devoted to a qualitative explanation
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of increasing spatial coherence in the process of propagation. In Sect. 16.5 the
differences between the Doppler shift and the Wolf shift are discussed.

We do not discuss here dynamic scattering (see [5]) related to the time-
dependent fluctuations of dielectric permittivity. The reason for this restriction is
that dynamic scattering includes the real Doppler effect.*

16.2 The Relation between Interference and the Wolf

Effect

The temporal autocorrelation function of the electric field E in the point r

B(r,τ) =
〈
E(r, t)E∗(r, t + τ)

〉
; B∗(r, –τ) = B(r,τ) (1)

determines both the intensity I and the spectrum W of the field:

I(r) = B(r, 0), (2)

W(r,ω) =
1

2π

∫ ∞

–∞
B(r,τ) exp(–iωτ) dτ. (3)

The inverse Fourier transform determines B(r,τ) in terms of W(r,ω):

B(r,τ) =
∫ ∞

–∞
W(r,ω) exp(iωτ) dω. (4)

Let us consider the Young experiment: the field created by two point sources,
located in different points (Fig. 1).

The field in some point r is the sum of two contributions, caused by these two
sources:

E(r, t) = E1(r, t) + E2(r, t). (5)

This relation follows from the linearity of electrodynamics.

* For example, the moving with the speed V sphere of radius R, having dielectric permittivity
ε > 1, may be treated as a time-dependent ε field, described by the function ε(x, y, z, t) = 1 +
(ε – 1)θ(R –

√
(x – Vt)2 + y2 + z2). Here, θ(u) = 1 for u > 0 and θ(u) = 0 for u < 0. The

frequency shift in the scattered electromagnetic field from this object may be treated either as the
real Doppler effect, or as dynamic scattering. Therefore, in the case of dynamic scattering the
real Doppler effect may contribute to the frequency shift as well as the Wolf shift.

It is now traditional in radar meteorology to measure wind speed using the Doppler shift,
which appears in the radar signal returns scattered by atmospheric turbulence [6].
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Figure 1 Interference experiment.

For the autocorrelation function of the total field we obtain

B(r,τ) =
〈[

E1(r, t) + E2(r, t)
] [

E∗
1(r, t + τ) + E∗

2(r, t + τ)
]〉

= B11(r,τ) + B22(r,τ) + B12(r,τ) + B21(r,τ). (6)

The term B11 presents the autocorrelation function of source 1 in the absence of
source 2, and similarly for B22. The terms B12 and B21 appear only if the corre-
lation in two sources exists. Because these sources are located in different points,
such a correlation is called spatial correlation.

If we set τ = 0 in Eq. (6), we obtain the intensity I(r):

I(r) = I11(r) + I22(r) + I12(r) + I21(r). (7)

If we consider the Fourier transform of B(r,τ) with respect to τ, we obtain the
spectrum

W(r,ω) =
1

2π

∫ ∞

–∞
[B11(r,τ) + B22(r,τ) + B12(r,τ) + B21(r,τ)] exp(–iωτ) dτ

= W11(r,ω) + W22(r,ω) + W12(r,ω) + W21(r,ω). (8)

The term [I12(r) + I21(r)] describes the interference fringes in the Young
experiment. The corresponding term [W12(r,ω) + W21(r,ω)] describes the
change of spectrum with respect to the background spectrum W11(r,ω) +
W22(r,ω), i.e., the Wolf effect. If we set τ = 0 in Eq. (4), we come to the im-
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portant relationship between these two phenomena:

I12(r) + I21(r) =
∫ ∞

–∞
[W12(r,ω) + W21(r,ω)] dω. (9)

The left hand side of Eq. (9) is due to T. Young, the right hand side is due to
E. Wolf.

We reach the important conclusion: the appearance of the interference fringes
and changes in the spectrum are closely related; both appear together as the result
of the spatial coherence of sources. If there is no Wolf effect, i.e., W12(r,ω) +
W21(r,ω) = 0, there should be no interference, i.e., I12(r) + I21(r) = 0. If one
of these phenomena can be observed, another also must appear (this statement
is correct even in the case of monochromatic radiation, when the position of the
spectral line does not change; see the example below). The visibility of interference
fringes may serve as an estimation of the relative contribution of the Wolf effect to
the spectrum change.

The first phenomenon (interference fringes) has been well known since 1801
(Thomas Young), but the second was theoretically discovered by Emil Wolf in
1986.

16.2.1 Example

In this subsection we will show that even in the case of a very narrow (quasi-
monochromatic) spectrum, the Wolf effect exists in the Young experiment and
formula (9) is correct. At first glance it seems that for a quasi-monochromatic
radiation, the interference fringes in the Young experiment exist, but there is no
frequency change, i.e., no Wolf effect. We will show here that in this case the Wolf
effect exists and formula (9) remains correct, but the Wolf effect manifests itself
not in the frequency shift, but in the coordinate dependence of the intensity of the
spectral line.

We will consider the simple example of two completely spatially coherent
sources in the Young experiment. Because the mean field must be zero, 〈E〉 = 0,
we must introduce randomness in the temporal behavior of E.
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If the distance between pinholes is d, the distance between the plane of pinholes
and the plane of observation is h, and the displacement of the point of observation
from the middlepoint is x (see Fig. 1), then the distances from the point of obser-
vation to the pinholes are equal to

R1,2 =

√(
d
2

± x
)2

+ h2 = R ± xd
2R

+ · · · , R =

√(
d
2

)2

+ h2. (10)

The field created by source 1 is given by the formula

F1(t) =
1

R1
exp

[
iω0

(
t –

R1

c

)
– iϕ

(
t –

R1

c

)]

≈ 1
R

exp
{

iω0t – ik0R –
ik0xd
2R

– iϕ
(

t –
R1

c

)}
, (11)

where k0 = ω0/c. Here, ϕ(t) is a random phase. We assume that ϕ has a Gaussian
multivariate probability distribution, 〈ϕ〉 = 0, and 〈ϕ2〉 � 1. For any random
value u having a Gaussian probability distribution with 〈u〉 = 0, the following
formula is correct:

〈exp(–iu)〉 = exp
(

–
〈u2〉

2

)
. (12)

Using Eq. (12) and taking into account that 〈ϕ2〉 � 1 we obtain

〈F1(t)〉 =
exp

[
iω0

(
t –

R1

c

)]
R1

〈
–iϕ

(
t –

R1

c

)〉

=
exp

[
iω0

(
t –

R1

c

)]
R1

exp
(

–
〈ϕ2〉

2

)
≈ 0.

Similarly, 〈F2(t)〉 ≈ 0.
The difference between two Gaussian values also is a Gaussian random value.

Thus, u = ϕ(t1) – ϕ(t2) is Gaussian and its variance

〈u2〉 =
〈
[ϕ(t1) – ϕ(t2)]2〉= Dϕ(t1 – t2) = Dϕ(t2 – t1) (13)
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is the temporal structure function of the phase fluctuations, which may be ex-
pressed in terms of the autocorrelation function of phase fluctuations.*

Similarly, the field created by source 2 is given by the formula

F2(t) =
1

R2
exp

{
iω0

(
t –

R2

c

)
– iϕ

(
t –

R2

c

)}

≈ 1
R

exp
{

iω0t – ik0R +
ik0xd
2R

– iϕ
(

t –
R2

c

)}
. (14)

The correlation matrix for fields is defined by the formula

Bik(τ) ≡ 〈
Fi(t + τ)F∗

k (t)
〉
, (15)

averaging over ϕ fluctuations. Using Eq. (11) and Eq. (14) we obtain:

B11(τ) =
exp[iω0τ]

R2

〈
exp

{
i
[
ϕ

(
t –

R1

c

)
– ϕ

(
t + τ –

R1

c

)]}〉

B22(τ) =
exp[iω0τ]

R2

〈
exp

{
i
[
ϕ

(
t –

R2

c

)
– ϕ

(
t + τ –

R2

c

)]}〉
(16)

B12(τ) =
1

R2 exp
[

iω0τ –
ik0xd

R

]〈
exp

{
i
[
ϕ

(
t + τ –

R2

c

)
– ϕ

(
t –

R1

c

)]}〉

B21(τ) =
1

R2 exp
[

iω0τ+
ik0xd

R

]〈
exp

{
i
[
ϕ

(
t –

R1

c

)
– ϕ

(
t +τ–

R2

c

)]}〉
.

Each difference of two Gaussian values ϕ(t1) – ϕ(t2) = u is a Gaussian random
value with zero mean value. Using formula (12) and approximate formulas R1,2 =
R ± xd/2R, we obtain the following expressions for Bik:

B11(τ) = B22(τ) =
1

R2 exp
{

iω0τ –
1
2

Dϕ(τ)
}

B12(τ, x) =
1

R2 exp
{

iω0τ –
ik0xd

R

}
exp

{
–

1
2

Dϕ

(
τ +

xd
Rc

)}
(17)

* We use the terminology of the theory of stationary random functions, where the quantity
〈[f (t1) – f (t2)]2〉 = D(t1 – t2) is called as a “structure function.” This function is closely re-
lated to the autocorrelation function 〈f (t1)f (t2)〉 = B(t1 – t2) by the relation D(t1 – t2) = 2B(0) –
2B(t1 – t2). Even if 〈f 2(t)〉 = B(0) → ∞, the difference 2B(0) – 2B(t1 – t2) for small |t1 – t2|
remains finite.
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B21(τ, x) =
1

R2 exp
{

iω0τ +
ik0xd

R

}
exp

{
–

1
2

Dϕ

(
τ +

xd
Rc

)}
= B∗

12(–τ, x).

In the following we use the diffusive model for the structure function of the phase
fluctuations

Dϕ(τ) = 2�|τ|. (18)

Such a model leads to a Lorentzian shape of the spectrum.
Another useful model is

Dϕ(τ) = �
2τ2,

which corresponds to a random frequency ω = ω0 +�ω, 〈�ω〉 = 0, 〈(�ω)2〉 =
�2, leads to a Gaussian shape of the spectrum.

For the spectrum corresponding to Eq. (18), we obtain after evaluation of the
standard integrals:

W11(ω) = W22(ω) =
1

2πR2

∫ ∞

–∞
exp{–iωτ}exp{iω0τ – �|τ|} dτ

=
�

πR2[�2 + (ω0 – ω)2]

W12(ω, x) =
�

πR2[�2 + (ω0 – ω)2]
exp

(
–

ik0xd
R

– i(ω0 – ω)
xd
Rc

)
(19)

W12(ω, x) + W21(ω, x) = 2 Re W12(ω, x)

=
2�

πR2[�2 + (ω0 – ω)2]
cos

(
k0xd

R
+ (k0 – k)

xd
R

)
.

Here, k = ω/c and k0 = ω0/c.
The values W11(ω) and W22(ω) present the original spectra, which would

appear in the absence of interference. The term W12(ω, x) + W21(ω, x) describes
the Wolf effect.

The entire spectrum in the point x is given by the formula

W(ω, x) = W11(ω) + W22(ω) + W12(ω, x) + W21(ω, x)

=
2�

πR2[�2 + (ω0 – ω)2]

{
1 + cos

[
(2k0 – k)

xd
R

]}
. (20)
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In the point x = 0, the entire spectrum is given by the formula

W(ω, x) =
4�

πR2[�2 + (ω0 – ω)2]
= 2[W11(ω) + W22(ω)].

The spectrum in some shifted point is shown in Fig. 2.
Figure 3 shows the x-dependencies of several spectral components W(ωi, x)

for different ωj.
For a very small �, the linewidth becomes very small and the Wolf shift can be

observed only in a rather narrow range of wavenumbers. The example of the Wolf
shift for such a situation (�/ck0 = 10–3) is presented in Fig. 4 for x = 0 (red) and

Figure 2 Two spectra corresponding to � = 103 sec–1, R = 1 cm, k0 = 105 cm–1,
d = 0.01 cm, x = 0 (blue), and x = 0.15 cm (red).

Figure 3 The functions W(ki, x) for k = 110,000 cm–1 (red), k = 120,000 cm–1

(green), k = 140,000 cm–1 (lightblue), and k = 160,000 cm–1 (violet). Other parame-
ters: � = 103 sec–1, R = 1 cm, k0 = 105 cm–1, d = 0.01 cm.
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x = 0.003 cm (blue). Because W(kmax, x = 0.003) ≈ W(kmax, x = 0)/200, the
normalized values W(k, x)/W(kmax, x) are presented.

In the case of a very small �, the following approximate equality is true:

�

π[�2 + (ω – ω0)2]
≡ δ�(ω – ω0) ≈ δ(ω – ω0). (21)

This relation means that δ�(0) = 1/(π�) → ∞ for � → 0, and the integral of
δ�(ω – ω0) over all ω is equal to 1. Therefore, for � → 0 using the identity
δ(ω – ω0)f (ω) = δ(ω – ω0)f (ω0), we may present Eq. (20) in the form

lim
�→0

W(ω, x) =
2

R2 δ(ω – ω0)
{

1 + cos
[

(2k0 – k)
xd
R

]}

=
2

R2 δ(ω – ω0)
[

1 + cos
(

k0
xd
R

)]
. (22)

In this case, the Wolf effect manifests itself not in the form of a frequency shift, but
in the form of the dependency of the intensity of the spectral line on the coordinate.
Figure 4 illustrates this fact: the shift in the maximum of the spectrum is very small
(�k/k0 ≈ 2 × 10–5, while �/(ck0) = 10–3), but the change of spectrum intensity
is about 200.

Thus, in the case of monochromatic radiation, the Wolf effect also exists in the
Young experiment in the form of the coordinate dependence of the intensity of the
spectral line.

Figure 4 The normalized shapes of thin spectral lines (�ω/ω0 = 0.001) in the Young
experiment for x = 0 (red) and x = 0.003 cm (blue).
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16.3 Physics of the Spectrum Changes in Radiation

Problems

The spectrum of a source, W(ω), describes the energy distribution between dif-
ferent frequencies. The spectrum may depend on the direction a priori, but for a
completely spatially incoherent source, the Lambert cosine law asserts that W(ω)
is proportional to the apparent area of the source, which is independent of ω.
Thus, for spatially incoherent sources, the spectrum W(ω) is independent of the
direction of observation. If the ratio W(ω1)/W(ω2) = N for some direction, it
remains the same N for any other directions.

A totally different picture appears for completely spatially coherent sources.
The typical spatially coherent source is an antenna. The radiation pattern of a uni-
formly fed round disk of radius a and wave number k = ω/c in the direction
determined by the angle θ is given by the well-known formula

F(k,θ) = P0(k)
[

2J1(ka sinθ)
ka sinθ

]2

. (23)

Here, P0(k) = F(k, 0) is the intensity of radiation at the axes of the beam. The
function F(k,θ) for two different k and two different P0 is presented in Fig. 5.

In this example, if one measures intensities of radiation in the direction of the
main lobe, the result would be that the higher frequency (narrower beam width) is
more intense than the lower one. The corresponding measurement in the direction
θ > 0.058 (for this example) would give the opposite result: the lower frequency is
more intense than the higher one. An example with several frequencies is shown in
Fig. 6. Thus, the spectrum of radiation for a completely spatially coherent source
depends on the direction.

In the following we consider four different cases: continuous spectrum and
discrete spectrum, and coherent and partially coherent cases.

Figure 5 The radiation patterns of a uniformly fed round disk at two different frequen-
cies, having different intensities P0. The intensity of the higher frequency radiation for
θ = 0 is larger than the intensity of the lower frequency radiation, but for θ > 0.058, the
situation is reversed.
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Figure 6 The radiation patterns of a uniformly fed round disk for several different fre-
quencies, having different intensities P0. The intensity of radiation of the higher frequency
for θ = 0 is greater than the intensities of radiation of all lower frequencies, but for direc-
tion (shown by the black line) the intensities are ordered in the inverse order.

16.3.1 Continuous spectrum, coherent source

If the spectrum of radiation at the axis of the source (the axis directions may be
related to the axis of symmetry, but in general its direction is arbitrary) is described
by the expression P0(k), and the radiation pattern of the source with respect to the
chosen axis is described by the expression Q(θ, k), then the spectrum of radiation
in the fixed direction θ is determined by the formula

W(k,θ) = P0(k)Q(k,θ). (24)

We consider two different models of source. In the first example,

Q(k,θ) =
[

2J1(ka sinθ)
ka sinθ

]2

(25)

corresponds to the radiative pattern of a uniformly fed round disk of radius a, and
P0(k) is described by the Planck formula

P0,Pl(k) =
C(T)k3

exp
(

k
T

)
– 1

, (26)

where T is measured in the units of hc/2πKB = 0.229 deg/cm, and the normaliza-
tion constant C(T) is chosen such that the maximum value P0,Pl(2.82T) = 1.

The plots of W(k,θ) for ka = 10 and several values of θ are shown in Fig. 7.
The black (Planck) curve corresponds to θ = 0, and three red curves correspond
to θ = 0.0005 rad (the upper red line), θ = 0.001 rad (the middle red line), and
θ = 0.0025 rad (the lowest red line).

The red shift that appears corresponds to the picture shown in Fig. 6.
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Figure 7 Spectra of uniformly fed disk for different θ. For θ = 0, the Planck spectrum
was chosen. For θ > 0, the red shift appears.

We should emphasize that while discussing the shift of the spectrum, we always
mean the shift with respect to some reference spectrum. In the examples considered
above, we always consider the spectrum of radiation along the axis of symmetry as
the reference spectrum. This choice is natural, but not unique. In principle, we
may consider the spectrum along some direction θ0 > 0 as a reference spectrum
(for instance, one of the red curves in Fig. 7). In this case, for θ > θ0 we obtain
the red shift, but for θ < θ0, the shift would be blue.

It is possible to construct a more sophisticated model of the source so that the
shift would be blue with respect to the reference spectrum of radiation along the
axis of symmetry. Such a source must have the minimum of radiation pattern along
the axis.

To construct such a source, we consider an antenna having a nonuniform dis-
tribution of current j(r), shown in Fig. 8. The negative current corresponds to the
phase shift π.

Analytically, this curve is described by the formula

j(r) = exp
[

–
(r – r0)2

2a2

]
cos

( r
L

)
. (27)

The corresponding radiation pattern is determined by the Fourier-Bessel trans-
form

Q(k,θ) =
[∫ ∞

0
J0(kr sinθ) exp

[
–

(r – r0)2

2a2

]
cos

( r
L

)
rdr
]2

. (28)

For θ = 0 the function (28) is independent of k; thus all frequencies have the
same intensity. The plot presented in Fig. 8 corresponds to ka = 10, kr0 = 20, and
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Figure 8 Example of the distribution of current for an antenna having a minimum of
radiative pattern along the axis.

Figure 9 Example of radiative pattern corresponding to the current distribution of
Fig. 8.

kL = 3. The examples of corresponding radiation patterns obtained numerically
for different k are shown in Figs. 9 and 10.

In Fig. 9, the green line corresponds to k = 0.5, the blue line to k = 0.6,
and the red line to k = 1. For the type of current considered in this example, the
direction θ = 0 corresponds to the minimum of radiative pattern.

To better illustrate the situation, in Fig. 10 the function Q(k,θ) is presented
in Cartesian coordinates. The red line in Fig. 10 corresponds to k = 0.5 and the
blue line to k = 0.7. If we consider, for example, the fixed value θ = 0.35, the
blue line is above the red one. This means that the radiation at higher frequency in
this direction is more intense than at lower frequency (blue shift). For some other
directions, for example θ = 0.8, we observe the red shift.
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Figure 10 Radiative patterns for two frequencies for the current distribution of Fig. 8.

Figure 11 Example of blue shift for the current distribution of Fig. 8.

Using Eq. (24), we can find the spectrum in some arbitrary direction (see
Fig. 11). We take the Planck distribution in θ = 0 direction (black), and obtain
the spectra in θ = 10–6 direction (the closest to the black curve), θ = 1.5 × 10–6,
θ = 2.5 × 10–6, θ = 5 × 10–6, and θ = 7.5 × 10–6 direction (the upper curve).

We observe the blue shift for all these spectra. The intensities of all the spectra
are larger than for θ = 0 because the chosen reference spectrum corresponds to
the minimum of radiative pattern. Physically, this means that if we observe the
Planck spectrum in the θ = 0 direction for a source having for all frequencies
the distribution of currents shown in Fig. 8, we will observe the more intense and
blue-shifted radiation in some other directions.

16.3.2 Continuous spectrum, partially coherent source

In the previous subsection we considered the case of completely spatially coher-
ent sources. Now we analyze the case of partially spatially coherent sources. The
example we consider here does not describe the general case of partially coherent
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sources, but corresponds to a rather simple special situation. We assume that the
source of radiation [current j(r)] consists of two parts: completely spatially co-
herent component A(k)exp(iϕ) with random phase ϕ; and spatially δ-correlated
component (spatial noise) N(k, r), which is statistically independent of ϕ. Thus,*

j(r) = A(k) exp(iϕ) + N(k, r), (29)

where 〈
N(k, r′)N(k, r′′)

〉
= N(k)δ(r′ – r′′) (30)

and 〈
j(r′)j∗(r′′)

〉
= |A(k)|2 + N(k)δ(r′ – r′′). (31)

If we consider the radiation of this current in the far zone using the Fraunhofer
diffraction approximation, it is possible to obtain the following formula for the
intensity of radiation 〈E(r)E∗(r)〉 of a disk of radius a:

〈
E(r)E∗(r)

〉
=

|A(k)|2a4

16r2

[
2J1(ka sinθ)

ka sinθ

]2

+
N(k)a2

16πr2 . (32)

Here, r is the distance and θ is the angle between the axis of symmetry and the
direction from the center of disk to the point of observation.†

Therefore, we add to the right-hand side of Eq. (24) an additional term,
describing a completely spatially incoherent source of radiation. According to
Eq. (32), the radiation pattern of such a source is independent of θ. As the re-
sult, we obtain

W(k,θ) = P0(k)Q(k,θ) + P1(k). (33)
* Of course, any realistic function 〈j(r′)j(r′′)〉 must have some finite correlation radius L < ∞ for

the first term, and some nonzero correlation radius l > 0 for the second term. If L is much larger
and l is much smaller than all other important scales, it is possible to use approximation (31).

† A little longer calculation leads to the formula for the coherence function that corresponds to the
same type of source:〈
E(r1)E∗(r2)

〉
= a4|A(k)|2 exp[ik(r1 – r2)]

16r1r2

[
2J1(ka sinθ1)

ka sinθ1

][
2J1(ka sinθ2)

ka sinθ2

]

+
N(k)a2exp[ik(r1 – r2)]

16πr1r2

[
2J1(ka

√
sin2θ1 + sin2θ2 – 2 sin θ1 sinθ2 cos(α1 – α2))

ka
√

sin2θ1 + sin2θ2 – 2 sin θ1 sinθ2 cos(α1 – α2)

]
.

The appearance of the factor 2J1(ka sinθeff)/ka sinθeff in this formula corresponds to that
in the van Cittert–Zernike theorem [3,6].
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Figure 12 Radiative pattern for the combination of spatially coherent and incoherent
sources.

The ratio P0/P1 describes the degree of coherence. For example, if P1(k) =
γP0(k), we obtain

W(k,θ) = P0(k)[Q(k,θ) + γcosθ]. (34)

The example of two radiative patterns, which correspond to the uniform current
distribution across the disk [Eq. (25)], the Planck spectrum [Eq. (26)] with T =
100, and parameters k1 = 180 (red), k2 = 350 (blue), a = 0.05, and γ = 2, is
shown in Fig. 12.

For small θ, the coherence is significant (bumps in radiation patterns near
θ = 0), but for large θ, radiation patterns became circular, corresponding to the
incoherent component of radiation.

In this example, the highest frequency is more intense for θ = 0. Then, for the
angle θ corresponding to the orange straight line, the red shift appears. Finally, for
the angle θ corresponding to the green straight line, the red shift disappears.

The spectra, corresponding to several values of θ, ka = 10, and γ = 0.2, are
presented in Fig. 13.

In general, there are two maxima at positions k01 and k02 in the spectra. When
θ increases, the position of k01 decreases (red shift). When θ approaches the re-
gion of incoherent radiative pattern (circle in Fig. 12), the second maximum at
highest k appears, and this second maximum becomes dominant when θ is inside
the incoherent radiative pattern. The position of k02 tends to the position of the
maximum of the Planck function while θ increases. Thus, the red shift disappears
in this region.

The blue shift situation [Eq. (28) and Figs. 9 and 10] is more complicated. In
this case, the instability with respect to small changes of θ appears. The blue and
the red shifts may replace each other while θ varies.
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Figure 13 Spectra for partially coherent source. The red shift appears as θ increases,
but for large θ, corresponding to the incoherent part of the radiative pattern, the new
maximum appears at the position of the maximum of the Planck curve, which becomes
dominant while θ increases, and the red shift disappears.

16.3.3 Discrete spectrum, coherent source

In the case of a discrete spectrum, the function P0(k) entered in Eq. (23) has the
form

P0(k) =
∑

i

Piδ(k – ki). (35)

An example of this spectrum is shown in Fig. 14 [here, Pi = P0,Pl(ki)].
If we consider the radiation in some direction θ, the previous formula (24) is

valid. Using this formula and Eq. (35) we obtain the following Fig. 15.

Figure 14 Discrete spectrum with envelope corresponding to the Planck curve.
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Figure 15 The Wolf red shift appears for the envelope of the discrete spectrum, but
each line remains at its original position.

Figure 16 The Wolf red shift for the partially coherent discrete spectrum.

The important feature of the Wolf effect for the discrete spectrum is that each
line remains at its original position. Only the magnitudes of each line change. In
contrast to the continuous case, only the maximum of the envelope of the discrete
spectrum shifts.

In the presence of an incoherent continuous component, the picture looks as in
the Fig. 16.

The value γ = 0.1 in this example.

16.4 Increasing Spatial Coherence in a Process of

Propagation

Usually all natural sources of radiation are incoherent. Thus, the question arises:
how do coherent or partially coherent sources appear? First, we must emphasize the
difference between temporal and spatial coherence. For example, the completely
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temporally incoherent point source, located in the point r0, produces a completely
spatially coherent field at the sphere |r – r0| = R1. Indeed, the phases of the field
in any point of this sphere at the same time are equal; i.e., we have complete spa-
tial coherence. At the surface of another sphere |r – r0| = R2 we obtain another
spatially coherent field, but the fields at these two spheres will be incoherent with
respect to each other.

To analyze the appearance of a spatial coherence of a field, radiated by a spatially
incoherent source, we first consider two incoherent sources, located in the points
r1 = (0, a/2) and r2 = (0, –a/2) (see Fig. 17).

At the large distance L � a, so that the angle θ = a/L 	 1, the two wave-
fronts are intersected in the point (0, L). Some indefinite phase ψ of the resulting
field appears in the point (0, L). If the observation point is shifted along one of a
phase front, the additional optical path Lϕθ and the additional phase shift kLϕθ

appears, so that the phase difference in the shifted point is equal to kLϕθ.
We may consider the fields in the initial and shifted points as spatially coherent,

if the phase difference kLϕθ < 2π. Thus, the angle of coherence ϕ is equal to

ϕ =
λ

Lθ
=

λ

a
(36)

and the coherence radius

ρ = Lϕ =
λ

θ
= L

λ

a
. (37)

Formulas (36) and (37) qualitatively express the van Cittert–Zernike theo-
rem [7,8]. The coherence radius Lλ/a of a completely spatially incoherent source

Figure 17 Derivation of the dependence of the coherence radius on distance for spatially
incoherent sources.
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coincides with the beam-width (λ/a)L of the completely spatially coherent source.
For a source of incoherent radiation of a scale a, a formula similar to Eq. (37) will
be valid.

It follows from Eq. (37) that the coherence radius is proportional to the distance
L from the source of incoherent radiation. For large L, the value ρ also may become
large. If we consider some scatterer having a linear scale D and illuminated by a
spatially incoherent source from large distance L, the coherence radius ρ of the
incident wave may be large in comparison with D. In such case, the scatterer will
be equivalent to the partially spatially coherent source of the secondary waves. This
mechanism may explain the appearance in nature of partially coherent sources of
radiation.

16.5 Differences in the Doppler and the Wolf Shifts

1. According to Eq. (24), the Wolf effect may be described by the multipli-
cation of the initial spectrum P0(k) by some factor Q(k,θ), depending on
θ and k. This means that if P0(k) = 0 in some region of k, the modified
spectrum also is zero in this region. The Wolf effect cannot shift the spec-
trum outside the initial region, where this spectrum was concentrated. The
additional factor Q(k,θ) may only change the shape of the spectrum and the
positions of maxima or minima of the original spectrum inside the original
domain.

There is no similar restriction for the Doppler shift. The Doppler shift
may be larger than the width of the initial spectrum. The change due to the
Doppler effect spectrum WD(ω) has the form

WD(ω) = W0

(
1 + β√
1 – β2

ω

)
, (38)

where β = v/c, v is the radial velocity, β > 0 corresponds to the red shift.
The ω-axis of spectrum is compressed by the factor K = (1 +β)/

√
1 – β2,

which may be very large if β → 1.
Three spectra are presented in Fig. 18. The Planck spectrum (black)

and the Doppler shifted spectra corresponding to β = 0.8 (orange, K = 3)
and β = 0.99 (red, K = 14). The red-shifted spectra look different than
in the Fig. 7, because the position of maximum is located far away from the
region of the original spectrum.

2. If we consider a relatively narrow spectral line (in Fig. 19 we present the
Gaussian line having δω/ω = 0.01) and compare the Doppler and the
Wolf shifts, we again see that the Wolf shift �ω does not exceed the width
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Figure 18 The Planck spectrum (black), the spectrum corresponding to β = 0.8 (or-
ange), and the spectrum corresponding to β = 0.99 (red).

Figure 19 The original Gaussian line (black), the red and blue Wolf shifted lines (or-
ange and blue; they correspond to different radii of the sources), and the Doppler shifted
lines for β = 0.065 (red) and β = 0.00245 (magenta). The value β = 0.00245 was cho-
sen such that the maxima of orange and magenta curves have the same position.

of the line δω,

�ω � δω. (39)

Thus, for narrow lines the Wolf shift is also small. At the same time,
the Doppler shift may be much larger than δω (the line, corresponding to
β = 0.065 in Fig. 19).
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Figure 20 The black lines present the discrete spectrum, having the Planck distribution
as an envelope. The red lines represent the red Wolf shifted lines and their envelope. The
magenta lines represent the Doppler shifted initial spectrum, corresponding to β = 0.8
and their envelope.

If in the case of narrow lines we compare the Wolf shift and the Doppler
shift for small β, it is difficult to distinguish between them (compare the
Doppler red shifted line for β = 0.00524 and the Wolf shifted lines in
Fig. 19). The value β = 0.00524 was chosen such that the maxima of
Doppler and Wolf red-shifted curves have the same position.

3. Now we consider the discrete spectrum. The discrete spectrum consists
of such narrow lines that it is impossible to observe the Wolf shift in-
side a single line. In Fig. 20, three spectra are presented. The black lines
present the discrete spectrum, having the Planck distribution as an enve-
lope. The red lines present the red Wolf shift. Only the maximum of the
envelope is shifted; all lines remain on their original positions. The inten-
sities of the Wolf shifted lines also change. The magenta lines present the
Doppler shifted spectrum, corresponding to β = 0.8. Not only the enve-
lope but each line is shifted, and also the distance between lines is reduced
in K = (1 + β)/

√
1 – β2 times. In this case, the difference between the

Doppler shift and the Wolf shift is also evident.

16.6 Conclusions

1. The interference fringes in the Young experiment may exist only if the Wolf
effect exists [see Eq. (9)].

2. The Wolf effect is caused by the dependence of the radiative pattern on
frequency for spatially coherent (or partially coherent) sources. For spatially
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incoherent sources, the radiative pattern is independent of frequency and
the Wolf effect does not appear.

3. In contrast to the Doppler shift, the possible Wolf shift is always in the
same region in which the original spectrum is concentrated. Thus, the Wolf
shift may be large for wide spectra, and it is small for narrow spectral lines.
The Doppler shift may have an arbitrary value independent of the width of
spectrum.

4. For the Wolf shift, the change of position of maximum is accompanied by a
change of intensity of the spectrum.

5. For discrete spectra, the main difference between the Doppler and Wolf
shifts is that the positions of spectral lines change in the case of the Doppler
shift, but then do not change in the case of the Wolf shift (only the posi-
tion of the maximum of the envelope may change for the Wolf shift). The
distance between the spectral lines does not change in the case of the Wolf
shift, but it does change in the case of Doppler shift.

6. For narrow spectral lines it is difficult to distinguish the Wolf shift from the
small Doppler shift (see Fig. 18).
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CHAPTER 17

THE SIGNIFICANCE OF PHASE AND

INFORMATION

Michael A. Fiddy and H. John Caulfield

17.1 Introduction

Many years ago, a paper by Emil Wolf inspired one of us (MAF) to look more
closely at the analytic properties of propagating and scattered optical fields. In
1962, Wolf discussed how Michelson’s interferometer could provide information
about the energy distribution in the spectrum of a light beam from measurements
of the visibility of interference fringes [1]. A simple relationship exists between the
visibility function V(τ) and the modulus of the complex degree of coherence, γ(τ).
The methods of Hanbury Brown, and Twiss [1] showed that |γ(τ)| could be de-
termined in various ways, and the important question arose as to how one might
recover spectral information, g(ν) from |γ(τ)|. Since V(τ) is proportional to the
Fourier transform of g(ν), one might think that only the autocorrelation function
of g(ν) might be found, without explicitly knowing the phase of γ(τ). How does
one determine the missing phase? The deep insight used to address this question
was to take into account the analytic properties of which a complete recovery of
g(ν) became possible. It is the underlying analytic properties of the functions that
we so routinely employ in modeling optical processes that can provide a deeper
understanding of relationships between field parameters and information; this is
what we address here.

The complex degree of coherence and the spectral energy density are related
by a Fourier transform, namely

γ(τ) =
∫ ∞

0
g(ν)exp(–2πiντ) dν. (1)

363
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Groundbreaking papers on the significance of phase references [1].

If the light is quasi-monochromatic, the visibility of the interference fringes is given
by [2]

V(τ) = A|γ(τ)|, (2)

where A = 2(I1I2)1/2/(I1 + I2) and I1 and I2 are the (time-averaged) intensities of
the two partial beams.

The physically and mathematically important constraint that results in γ(τ)
being analytic is that g(ν) is a causal function. This imparts constraints on the real
and imaginary parts of γ(τ). The well known theorem due to Titchmarsh [3]
proves that (1) causality in the frequency domain; (2) γ(τ) being analytic and
regular in the lower half of the complex plane (lhp); and (3) the real and imaginary
parts of γ(τ) being related by a Hilbert transform, are equivalent statements. The
Hilbert transform relationship derives from taking the real and imaginary parts of
a Cauchy integral over a contour, including the real axis and a semicircle in the lhp
whose radius tends to infinity. Invoking Jordan’s lemma [3] allows one to write,
on the real axis

Im{F(x)} = P
∫ ∞

–∞
Re{F(x′)}

x′ – x
dx′. (3)

This leads to many powerful dispersion relationships for Fourier transforms of
causal functions. An extension to these dispersion relationships, when considering
the real and imaginary parts of logγ(τ), is possible, provided that this function
satisfies Titchmarsh’s theorem. This occurs if γ(τ) has no zeros in the lhp, a con-
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dition known as the minimum phase condition. When this condition is satisfied,
it follows that a Hilbert transform can be written between the real and imaginary
parts of logγ(τ), allowing the phase of γ(τ) to be calculated from its magnitude.
Kano and Wolf [1] proved that for the specific case of blackbody radiation, γ(τ) has
a zero-free lhp and no zeros on the real axis either. This was based on the analyt-
ical expression for the real coherence tensor of blackbody radiation first given by
Bourret [4] and corrected by Kano and Wolf. They showed that

γ(τ) = 90ζ(4, 1 + iτ)/π4, (4)

where ζ is the generalized Riemann zeta-function, which has no real zeros and a
zero-free lhp. This is one of what might be many asymmetric spectral profiles that
can be uniquely determined from knowledge of the absolute value of the complex
degree of coherence. Wolf hypothesized that the existence of zeros in the lhp would
have a physical significance, and this remains a tantalizing proposition.

What is so fascinating about this is that inherent mathematical properties of
the functions we use in our physical models allow this inverse problem to be solved
from just one data set, namely real positive measurements of the visibility function.
One is led to wonder what distinguishes the class of problems for which inversion
is possible from magnitude-only data from those for which it appears that phase
information must somehow be independently measured. Numerous interferomet-
ric techniques exist that can provide phase information, but they are not always
convenient to implement. Can we preprocess our data or alter our experiments in
such a way that only real positive measurable quantities are required to extract the
information we seek without recourse to interferometry? The question is essentially
the title of this paper, exploring the significance of phase and what information it
carries.

17.2 Analyticity and Phase

Exploiting the analytic properties of the Fourier transforms of causal functions was
studied for many years in the context of phase retrieval [4–8]. It became clear that
in one-dimensional problems, the presence or absence of zeros on the lhp deter-
mined the degree of ambiguity one might expect in attempting the recovery of
phase from magnitude data, see, e.g., Ref. [9]. Indeed, it became almost a sport
to create ambiguities based on this deeper understanding of phase ambiguities,
by “complex zero-flipping.” Such a flip, or complex conjugation of a zero’s coor-
dinates, left the Fourier magnitude unchanged but altered the Fourier phase (see
Fig. 1). Extending this understanding to two- or higher-dimensional problems has
remained elusive, however. This is because of the fundamental difference between
the properties of analytic functions of one complex variable, which, like polyno-
mials, can be factored into a product of their roots or zeros; i.e., the fundamental
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Figure 1 All four different real possitive objects shown in a, b, c and d produce the
same far field intensity, shown in e. The four different objects have been generated by
reflecting or ‘flipping’ the zeros of F(z) about the x-axis, as described in the text. © 1978
by Macmillan Magazines, Ltd (see Ref. [9]).

theorem of algebra applies. In two-, three- or higher-dimensional problems, this is
not the case.

Conspiring to make things more complicated were two other landmark papers
in the 1980s. One was by Oppenheim and Lim arguing that phase is far more
important than magnitude information in imaging, i.e., two-dimensional prob-
lems [10] (see Fig. 2). The other was by Hayes and McClellan [11] reminding
the less mathematical amongst us that in two- and higher-dimensional problems,
the Fourier transforms of causal functions, or bandlimited functions for that mat-
ter, were not generally factorizable. Indeed, while the zero set of one-dimensional
functions has dimension zero, i.e., they occur at isolated points, in n-dimensions
the zero set has a volume of 2n – 2 dimensions [12] and there is no analogous
tool such as the Weierstrass or Hadamard product through which to represent the
function by its zero locations. Also, zeros can never be isolated points in analytic
functions of two or more complex variables.

For the last 25 years or so, phase retrieval problems have come and gone, in
the sense that practical methods have been developed to recover phase information
from magnitude data, but they have not relied explicitly on the underlying analytic
properties of the wave. These properties may have implicitly been used to justify
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Figure 2 (a) Original image A. (b) Original image B. (c) Image synthesized from the
Fourier transform phase of image A and the magnitude of image B. (d) Image synthesized
from the Fourier transform magnitude of image A and the phase of image B. © 1981 by
IEEE (see Ref. [10]).

algorithmic success (e.g., by stating that a nonfactorizable function should have a
unique phase, since zero-flipping cannot occur), but there remains to be found a
satisfying analytical relationship between magnitude and phase. Dr. Wolf initiated a
curiosity in this subject that has not faltered, and deeper insights can be expected by
understanding the role of analyticity in optics. It should be admitted that in inverse
problems, the reality of noisy sampled data sometimes appears to make the explicit
use of analyticity, e.g., for superresolution, somewhat impractical. Nevertheless, its
existence as a ghost in the mathematical framework that we employ should not be
dismissed.

17.3 On the Absence of Magic

When information is lost in a measurement process, it is truly and irreversibly
lost; it is absent from the data. What we mean by information restoration is solv-
ing the inverse problem; i.e., determining what information was there before the
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information-destroying operation was performed. Absent magic, the missing infor-
mation must come from somewhere other than the data themselves, or have been
explicitly encoded in the measured data a priori. In all the cases discussed here
and also in our other paper in this volume: “Thinking backward: holography and
the inverse problem,” the information is injected into a computer in the form of
assumptions about the problem and the measurements. If those assumptions hold,
the required restoration will be accurate, while the converse will also be true.

17.4 What is Phase?

Dr. Wolf recently pointed out that, when discussing measurements of phase, one
is usually assuming that the field is monochromatic [13]. He makes the important
point that the question as to the true meaning of the phase of an optical field is
not asked because it is typical to assume that fields are monochromatic. In prac-
tice, every field has finite bandwidth and its phase fluctuates rapidly and randomly.
However, if a field is spatially completely coherent at each frequency, one can asso-
ciate a monochromatic field of that frequency that represents a statistically averaged
behavior of the fluctuating field. The phase of this associated monochromatic field
is proportional to the phase of the spectral degree of coherence of the original field.
Wolf explains the distinction to be made between coherence and monochromaticity.
The ability of two beams to produce interference fringes when superimposed is a
measure of the coherence between the two fields. The point is well taken, however,
that two fields represented by V1(t) = aexp[iφ1(t)] and V2(t) = aexp[iφ2(t)] will
have an interference term given by 2a2〈cos[φ2(t) – φ1(t)]〉 where 〈〉 denotes en-
semble average. For monochromatic fields for which φj(t) = αj + ωt, where
αj are constants, the interference term is proportional to cos(α2 – α1), which is
nonzero unless α2 – α1 = nπ/2. However, even for nonmonochromatic fields, in-
terference is possible, if, for example, φ2(t) = φ1(t) + β, i.e., if the phases differ
from each other by a constant not equal to nπ/2. Thus even rapid fluctuations in
time of these phases does not necessarily mean that they are not mutually coherent;
monochromaticity is not a necessary condition for interference. Thus, although
an optical field is never strictly monochromatic, it may be completely spatially co-
herent, not only at a single frequency but at all frequencies in its spectrum [13].
Indeed, the original off-axis holograms of Leith and Upatnieks exploited that phe-
nomenon before they ever used laser holography.

For a steady state optical field, i.e., a statistically stationary field, its cross-
spectral density is given by

W(r1, r2,ω) =
∫ ∞

–∞
〈V*(r1, t)V(r2, t + τ)〉exp(iωτ) dτ. (5)
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It is known that if an optical field is spatially completely coherent at frequency ω

and for all points r1, r2 in a domain D then W necessarily factorizes into [14]

W(r1, r2,ω) = U*(r1,ω)U(r2,ω), (6)

where U satisfies the Helmholz equation throughout D; this relationship implies
that the field consists of a single mode. This U(r,ω) can be identified with the
space-dependent part of a monochromatic field V(r, t) = U(r,ω)exp(iωτ), which
confirms that we can associate with any field that is spatially coherent at a frequency
ω, a monochromatic field of the same frequency that yields the cross-spectral den-
sity of the field. It is this deterministic field U = |U(r,ω)|exp[iφ(r,ω)] whose
amplitude is associated with the square root of the spectral density and whose phase
is associated with the spectral degree of coherence. The phase function is therefore
the same for both the averaged field variable U of a spatially coherent field and its
spectral degree of coherence.

17.5 Can We Do Without Phase?

This question is being posed only in the context of solving an inverse problem, i.e.,
to recover signal or image information from measurements of its scattered field or
its Fourier magnitude. Wolf has recently demonstrated that, indeed, one can [15].
The approach is inspired by diffraction tomography methods based on the Green’s
function phase-retrieval technique proposed by Teague [16]. For weakly scatter-
ing objects, intensity measurements taken on several planes have been shown to
be sufficient for recovery of the object distribution, especially when the scatter-
ing object has a well-localized Fourier spectrum. Teague’s original approach relied
on determining the phase from intensity measurements by solving a 2D Poisson
equation, which in turn required a paraxial approximation to hold and an absence
of vortices. Earlier innovative work by Carney, Wolf, and Agarwal [17] showed
how measurements based on a generalization of the optical (cross-section) theo-
rem could also allow object reconstruction without phase information. The total
power extinguished from the incident field as a result of scattering and absorption
specifies the imaginary part of the scattered field, or more precisely, the imaginary
part of the scattering amplitude. By making measurements of the extinguished
power with two incident plane waves propagating in different directions, and with
different relative phases, one can extract the absorptive part of the scattering object.

It is rather tempting, especially in the field of Fourier optics, to assume that
two parameters are always necessary in order to fully describe a propagating or
diffracted field, its magnitude, and its phase, φ. We write for a two-dimensional



370 The Significance of Phase and Information

problem, that

F(x, y) = |F(x, y)|exp(φ(x, y)) =
∫ ∫

f ( p, q)exp(–ik[ px + qy]) dp dq, (7)

where k is the wavenumber, 2π/λ. It would seem that only if the phase φ is a
constant can its importance be ignored when retrieving the function f . Symmetries
imposed in the object domain, for example replicating f ( p, q) in such a way that
a Hermitian function existed would ensure that F(x, y) is real, but not necessarily
real and positive. The function in the ( p, q) domain needs to be a positive definite
function for F to be identical to an intensity |F|2. Holography exploits this, since
reconstructing a hologram can be regarded as generating the Fourier transform,
optically, of the transmittance of the hologram, which is |H|2 = |R + F|2, where R
is a reference wave and F is the complex FT of the object to be recovered. Provided
R is an off-axis plane wave, a reconstruction of f convolved with a δ-function can
be spatially distinct from the autocorrelation function of f .

The magnitude of F, |F|, is also real and positive but is not typically a ban-
dlimited function. Nevertheless, there are conditions under which it can provide
a reconstruction of f directly, without the need to compute or measure a phase
function. This is illustrated below.

This can be understood by considering the bandlimited intensity data, |G|2,
written as |1 + F|2, which can allow |G| to be approximated by {(1 + F)(1 +
F)*}1/2 = {1 + 2Re{F} + |F|2}1/2, which can be increasingly well approximated
by 1 + Re{F} as |F| 	 1.

We note that these examples suffer from the same kind of problems associated
with the method proposed over 10 years ago by Devaney [18] in which backprop-
agation of intensity data could sometimes spatially separate object and autocorre-
lation function information, in much the same way that Gabor envisioned the first
hologram might work even for an in-line rather than off-axis hologram. Separa-
tion of the desired object information from (often severely low-pass filtered and
therefore broadened) background information becomes the challenging problem
to solve.

17.6 The Role of Reference Points

Holography, as discussed above, provides a mechanism through which a magni-
tude-only function, specifically the real transmittance of an amplitude hologram,
represents a function that can encode information about f ( p, q) from a function of
the form |F(x, y)|2. The role of a reference wave, or reference point in the object
domain, is the key.

The role of reference points in assisting with phase retrieval has been discussed
many times in the past, exploiting for example Rouche’s theorem to enforce the
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minimum phase condition [19], and to ensure irreducibility of a field thereby en-
suring a unique phase by exploiting Eisenstein’s criterion [20].

Figure 3 Reconstructions from an asymmetric object with totally random phase: peak
phase zero ampilitude-only reconstruction (upper left), peak phase zero phase-only recon-
struction (upper right), peak phase 90◦ amplitude-only reconstruction (lower left), peak
phase 90◦ phase-only reconstruction (lower right). © by Optical Society of America (see
Ref. [21]).

Figure 4 This figure illustrates reconstructions from Fourier magnitude, Fourier phase,
and Fourier intensity of an object consisting of a simple square, but with a reference point
inserted at one corner. Two amplitudes for the reference point are given, 1 and 10. As
expected, the larger the amplitude of the reference point, the more prominent is the recon-
struction of the square, even from Fourier magnitude in the case of an amplitude of 10.
The phase reconstructions are not that good.
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Figure 5 The figure above illustrates the case for an intermediary value of the amplitude
of the reference point of 5. Also, the location of the reference point is now removed from
the square by a distance greater than the diagonal of the square. This “off-axis” reference
point ensures that the inverse Fourier transform of the intensity alone reveals the object.

In a recent paper by Lohmann et al. [21], the relative importance of Fourier
amplitude and phase was discussed. The widespread belief that phase is more im-
portant was questioned through a series of elegant examples. They showed that
swapping Fourier phases or amplitudes in spectra with those from different ob-
jects, did indeed confirm the earlier work of Oppenheim and Lim [10], but only
up to a point, when the object is real and positive. In Ref. [21], examples are
shown of different centrosymmetric objects with a reference point located at the
origin, whose magnitude equaled the total energy of the object. These were then
reconstructed from their Fourier amplitude only, or Fourier phase only, with the
phase of the reference point either zero of π/2. It turned out that even for non-
symmetric objects possessing complex values, whether the Fourier magnitude or
the Fourier phase regenerated the object (and its twin), depended on whether the
phase of the reference point was zero or π/2, respectively.

It is surprising that such a dramatic effect can arise from changing the phase of
only one pixel in the object domain; it brings into question whether it is fair to say
phase is more important than magnitude; this is illustrated below.

In Fig. 6 the Fourier transform of the logarithm of the Fourier intensity is
shown for increasing values of the amplitude of the reference point. As is evident,
the reconstruction of the square becomes increasingly clear as the reference point’s
amplitude increases. An interpretation of this is that as that amplitude increases,
the Fourier transform of the square plus the reference point can be thought of as
approximating the exponential of the Fourier transform of the square alone. If this
exponential exists and its Fourier transform has a causal compact support, then
it follows that the logarithm of the Fourier transform of the square plus the refer-
ence point is also analytic. The latter is the condition for the 2D minimum phase
condition to be satisfied, which allows one to recovery of the phase of F from its
magnitude using a logarithmic Hilbert transform. It is therefore not surprising that
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Figure 6 Trivial case: with a strong reference wave added to F, i.e., 1+F then ∼ exp(F)
for |F| 	 1 and FT{1+F} = δ+ f ; thus we expect to recover f when a (strong) reference
point is present somewhere in the object domain.

one can recover the object from Fourier intensity data when this somewhat trivial
condition has been satisfied. It does suggest a test, however, for whether phase can
be computed from magnitude in this way, because if the Fourier transform of the
logarithm of the Fourier intensity appears to separate into two objects as shown,
then the Fourier transform of that object is probably close to being a minimum
phase function.

Millane and Hsiao [22] recently commented on this work, arguing that in the
examples above, the phase functions used were not independent of the true phase
function. They meant by this that the central reference point was so dominating
that the Fourier phase of interest is a small perturbation on this known background.
They concluded that phase dominance does indeed appear to be a general phenom-
enon. If this is the case, then it explains why trying to reconstruct objects with poor
or missing phase information is so difficult. But it still begs the question as to why
this is so, and whether some kind of general preprocessing of the data could not
allow straightforward object reconstruction from the Fourier magnitude. With a
suitable reference point this appears to be true, but when thinking about whether
a reference point is or is not part of the object and whether it is necessary to know
of its existence a priori seem to be moot points. An intensity distribution, given the
clarification of the meaning of phase by Wolf, should be an interferogram, and the
phase of the object should be encoded in a way that the object structure can be
extracted.
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17.7 Phase and Information

Hinted at and even expressly addressed in what precedes this paragraph is the
possibility that phase may carry more information than amplitude in an optical
wavefront. But caution should be recommended in reaching a universal conclu-
sion on this point. A single wavefront propagating through space or transformed
by diffraction-limited optics should conserve information. That is, the transforma-
tion is unitary. Gabor captured this idea in terms of conservation of logons—joint
spatial-angular (phase) information. But the way information is distributed within
phase and amplitude may not be constant. Consider a uniform beam (having very
little spatial amplitude information) converging toward a point (and thus having
substantial phase information). At the focal plane, there is much spatial informa-
tion telling us where the beam was focused but little valuable phase information,
as the amplitude is negligible at most points. At least in terms of practical valu-
able information, the distribution of that information between amplitude and phase
may change considerably under unitary transformation. A good Bayesian, however,
might suggest that we ought to measure and use all of the available information,
even the amplitude and phase information on low-amplitude points if we seek the
most accurate determination of the focal point. Those are issues too remote from
our central theme to warrant further discussion here. This paragraph is offered
not as proof of any thesis but as a cautionary note about the danger of making a
sweeping conclusion that phase carries more information than amplitude.

17.8 Conclusions

Given Wolf ’s more precise definition of what is meant by the phase of an optical
field, it is tempting to state that the importance of phase in inverse Fourier prob-
lems should be interpreted in a manner consistent with this. In linear problems, one
can interpret the far-field scattering pattern as the linear combination of spherical
wavelets from each point in the plane emerging from the object. It is the relative
phase of these wavelets that, when they combine, generate the scattered field. The
intensity of this field is an interferogram when employing light with a high de-
gree of spatial coherence, and these relative phases are in principle embodied in
the measured intensity. The challenge lies in how to extract the information. Inver-
sion of intensity data provides only an autocorrelation function, which, as we have
described above, may only yield useful information about the object under specific
circumstances. If any part of the object is known a priori, or a conscious decision to
introduce a reference point or interpret that there is a reference point present, then
one has a handle on how to “read out” the Fourier phase and magnitude in much
the same way as one would replay a hologram. The reference point provides a con-
straint against which the remainder of the information in the measured data can
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be interpreted. This is not to say that determining the object is straightforward,
only that, in principle, it becomes possible. Iterative methods, criteria to enforce
a minimum phase condition, or, recursively, recovering f from its autocorrelation
function, all appear to have this need for a reference point of some kind. The more
prominent the reference point the better. X-ray diffraction techniques based on the
heavy-atom method exploit the same idea. This is a kind of holography, a means
to record patterns that allow a solution of the inverse problem given the proper
information to inject into the solver. The difficulties come when nothing is known
a priori of this kind. When information is lost and we have no a priori information
of any kind about the problem and/or the measurement system; the situation is
hopeless. For all other situations, this is where the problems get interesting.
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CHAPTER 18

LOCAL INTERFACE TECHNIQUES

IN WAVE-OPTICAL ENGINEERING

Frank Wyrowski and Jari Turunen

18.1 Introduction

Optical engineering, which addresses modeling, design, fabrication, and testing of
optical systems, is often associated with imaging systems and the design of lenses.
Thus, classical optical engineering is largely based on a ray-optical representation
of electromagnetic fields and the modeling of their propagation by geometrical op-
tics, i.e., ray tracing. This geometrical theory of field propagation is obtained from
general electromagnetic wave theory at the short-wavelength limit, as illustrated
in Chapter 3 of Ref. [1]. It serves well the propagation of smoothly modulated
fields that are are typically of concern in the modeling of imaging systems and il-
lumination systems. As soon as the truncation of fields by apertures (see Sect. 8.8
in Ref. [1] and Refs. [2,3]) or other high-frequency field modulations become
important in an application, wave-optical propagation techniques must be applied.
Strong modulations may be inherent in the field we wish to obtain; consider for
instance the generation of a top-hat profile laser beam. Such modulations may be
introduced by strong aberrations (see Chapter 9, Ref. [1]), or by the use of micro-
structured elements [4]. Independently of the reason, geometrical optics modeling
starts to fail.

Often the use of geometrical optics for modeling the propagation of fields is
directly associated with a ray-bundle representation of the field, which the optical
designer can employ to evaluate the quality of an imaging system by investigating
spot diagrams in or near the image plane. The representation of fields by rays is
indeed a basic characteristic for modeling in conventional optical engineering. If
the geometrical optics propagation model starts to fail, we need to give up the ray-
optical field representation as well. It should be noted, however, that a wave-optical
field representation in combination with a geometrical optics propagation model
can give very reasonable results, as we will see in Sect. 18.5.

379
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In modern optical engineering, systems with increasingly complex nonimaging
functionality are of concern. The innovative potential of optics and photonics lies
particularly in the capability to generate tailored electromagnetic radiation. At this
stage we arrive at a domain called photon management. Because of the complex
functionality, one is typically not allowed to use a ray-optical field representation.
Instead, the evaluation of the optical system requires access to the entire electro-
magnetic field information. As an example, consider the calculation of the M2

parameter of a Gaussian beam, which requires the evaluation of the complex am-
plitude of the beam at the observation plane. Thus we may conclude that optical
engineering for photon management must rely on a wave-optical field model in-
stead of the ray-bundle representation. Moreover, electromagnetic radiation that
is best adapted to a given application is not smoothly modulated a priori, which
implies that often microstructured elements must be included in a system. Thus,
in substantial parts of the system a geometrical optics propagation model may not
be suitable. We arrive at the conclusion that a wave-optical generalization of op-
tical engineering is required for photon management, which is itself one pillar of
the innovative potential of photonics. We refer to the systematic inclusion of wave
optics in optical engineering as wave-optical engineering (WOE) [5].

It would be logical to apply a fully rigorous electromagnetic modeling of the
propagation of electromagnetic fields through optical systems in WOE. However,
an exact solution of Maxwell’s equations is at best a time consuming but often
an unmanagable numerical task. Therefore it is important to develop approxi-
mate propagation models suitable for wave-optical engineering. In this chapter we
describe how the knowledge of elementary rigorous solutions of the propagation
problem can be used to develop more general propagation techniques (to be called
local interface techniques) suitable for the analysis and design of photon manage-
ment systems.

This chapter is organized as follows. We begin in Sect. 18.2 with a specifica-
tion of the propagation problem of concern. Then, in Sect. 18.3 we describe the
use and limitations of rigorous electromagnetic techniques to solve the problem.
Section 18.4 provides the basic ideas behind local interface approximations. In
Sect. 18.5 and 18.6 we describe two classes of local approximations in some detail.
Finally, comments on the presented techniques are provided in Sect. 18.7 and some
conclusions are drawn in Sect. 18.8.

18.2 Problem Statement

The principle configuration of a general optical system is illustrated in Fig. 1. An
electromagnetic field enters the system from the left and propagates through a se-
quence of an arbitrary number of sections of homogeneous media separated by



Frank Wyrowski and Jari Turunen 381

Figure 1 Illustration of an optical system consisting of a sequence of interfaces of arbi-
trary form between sections of homogeneous dielectric media.

optical interfaces. The interfaces may be spherical or aspherical refractive or reflec-
tive surfaces, microstructured surface profiles, refractive-index-modulated layers,
or combinations of these. The incident field is assumed to be known, and our basic
goal in modeling the system is to predict the field in the output region after it has
passed through the whole system. Physically, the solution of this problem requires
a proper mathematical field model and its propagation through homogeneous me-
dia as well as through interfaces. In wave-optical engineering, an electromagnetic
field model is mandatory. Depending on the source, different models are appro-
priate. The harmonic field model is useful not only for monomode laser sources,
but also as a basis for partially coherent radiation in the space-frequency domain
(see Sect. 18.7). Using a harmonic field model, the electromagnetic field in any
homogeneous region is completely represented by the complex amplitudes of the
x- and y-components of the electric field in an arbitrary z-plane in the region, that
is, by Ex(x, y, z0) and Ey(x, y, z0) if we use the plane z = z0 as a reference. The
two complex amplitudes can be formally combined by introducing the harmonic
field operand f(x, y, z0) = [Ex(x, y, z0), Ey(x, y, z0)]. Mathematically, the propaga-
tion of the field thus means the application of propagation operators, in the form of
integrals or algorithms, on the harmonic field operand. In homogeneous media the
propagation operator can be expressed in terms of the angular spectrum of plane
waves integral, or the Fresnel integral in paraxial approximation [17]. The prop-
agation through interfaces states a boundary value problem in terms of Maxwell’s
equations. Here we focus on the propagation of the harmonic field f0 through a
single interface, which states the fundamental problem to be solved in order to
propagate a field through the entire system. Figure 2 illustrates this fundamen-
tal problem. We wish to determine f1(x, y, z1) from the knowledge of f0(x, y, z0),
the shape of the interface, and the refractive indices n0 and n1 (the transmission
geometry is considered here, but the reflection mode of operation can be treated
analogously). It is remarkable that this basic problem possesses a rigorous solution
for only a few special interface geometries, as we see next.



382 Local Interface Techniques in Wave-Optical Engineering

Figure 2 A plane wave f0 propagates through an interface between two homogeneous
dielectrics with refractive index n0 and n1. The interface is of general shape and therefore
a rigorous solution of the propagation problem does not exist. The virtual planes in z0 and
z1 encompass the interface in a way that minimizes the distance z1 – z0.

18.3 Rigorous Solutions of the Propagation Problem

In rigorous theory one seeks exact solutions of Maxwell’s equations in the presence
of the electromagnetic boundary conditions defined by the interface. Thus we have
a scattering problem: fields in regions separated by the interface are matched to
each other. Rigorous solutions of this problem exist only for some special geome-
tries that are of interest in WOE. The most important of such geometries are plane
interfaces (also film stacks) and gratings. In the case of plane interfaces, just two
plane waves are created because of the symmetry, and Fresnel’s equations are ob-
tained. In the case of gratings, Bloch’s theorem leads to an infinite but countable
number of plane waves in both regions, and matching is possible by truncation.
This leads to the rigorous electromagnetic theory of gratings [6–10], which pro-
vides answers to many questions in WOE. Some of these are discussed in Ref. [9].
However, this approach has certain severe practical limitations, which we will dis-
cuss below. First of all, rigorous theory is applicable mostly to single interfaces, not
to entire systems such as that illustrated in Fig. 1.

The most generally applicable rigorous technique is the Fourier modal method
(FMM) [4,10], but in some cases (especially for continuous surface profiles)
coordinate-transformation methods [11,12] are more natural and efficient. All
these methods are directly applicable only to periodic structures, i.e., gratings. If
a grating is illuminated by a plane wave, it produces a discrete set of diffracted
plane waves with the propagation directions determined by the grating equations.
The reflected and transmitted fields are thus expressed as plane-wave superpo-
sitions (Rayleigh expansions) with unknown complex amplitudes associated with
individual plane waves.



Frank Wyrowski and Jari Turunen 383

In FMM the complex amplitudes of the diffraction orders, and thereby also the
diffraction efficiencies of different orders, are obtained by matching the Rayleigh
expansions with discrete waveguide mode expansions of the field within the grat-
ing. The numerical procedure in FMM can be divided into two main parts: first,
the modal propagation constants and wave forms are determined by solving a ma-
trix eigenvalue problem; then the matching problem that leads to a set of simulta-
neous equations is solved. Unfortunately both numerical problems (but in partic-
ular the eigenvalue problem) scale badly when the grating period d is increased.
This is because the number of propagating orders increases with d, and so does
the size of the matrices that must be treated in the numerical solution. For one-
dimensionally periodic gratings, the size of the boundary value matrix increases
with ∼d2, and for biperiodic gratings the increase is ∼d4. With such scaling it
is obvious that no foreseeable development in computer technology will permit
rigorous analysis of macroscopic diffractive structures. At present the practical up-
per limit is d ≈ 1000λ for one-dimensionally periodic gratings and d ≈ 30λ for
two-dimensionally periodic gratings. It should be noted that these limits are only
indicative; if the grating structure is simple, much larger periods can be used, but
for metallic gratings the limits can be substantially lower, especially if the conduc-
tivity is high.

As already mentioned, the most efficient rigorous methods apply to periodic
structures only. There are ways to use these methods also for nonperiodic struc-
tures, but then the computational complexity is increased even further. One way is
to model the incident field as a superposition of plane waves that illuminate only a
part of a single grating period. In this case the diffraction problem has to be solved
independently for each incident plane-wave component and the results are super-
imposed coherently. Another way is to embed the nonperiodic structure as a part
of a periodic structure such that the modulated part forms only a small fraction of
the grating period. If rigorous grating theory is now applied to the periodic struc-
ture and the output field is truncated such that information about the periodicity
is lost, the truncated field can be propagated further without a significant error.
These techniques can be used to model, e.g., the transmission of subwavelength
holes in a metallic screen [13], but they are definitely not suitable for analyzing
large nonperiodic structures.

18.4 Concept of Local Interface Techniques

The considerations presented above clearly show that rigorous solution of the prop-
agation problem through interfaces is possible for planar and laterally periodic in-
terfaces, and for microscopic nonperiodic structures. Thus there is a compelling
need to develop approximate, yet sufficiently accurate methods for the analysis of
light reflection and transmission by optical interfaces.
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The basic concept behind local interface techniques is to divide a general prop-
agation problem into a set of simpler problems that can be solved rigorously—the
results are then combined to obtain an approximate, but sufficiently accurate, so-
lution of the original problem. We apply two basic concepts to divide the general
problem into manageable parts: (1) decomposition of the incident field into later-
ally truncated fragments, which illuminate approximately only elementary fractions
of the interface, and (2) decomposition of the response of the interaction of the inci-
dent field with the interface into approximately independent interactions with local
interface features. We refer to the the first technique as local elementary interface
approximation (LEIA) and to the second as local independent response approx-
imation (LIRA). In LEIA, the most important elementary interfaces are planar,
periodic, and spherical interfaces. The strong response of abrupt profile transitions
in the interfaces is a particular motivation to develop LIRA.

18.5 Local Elementary Interface Approximations

As discussed above, we know rigorous solutions of the propagation of harmonic
fields through planar and periodic interfaces between two homogeneous dielectrics.
How can we use this knowledge to derive propagation methods through more gen-
eral interfaces? We will discuss the answer to this question using the rigorous solu-
tion for the plane interface. We wish to emphasize that we only present qualitative
arguments of this method to propagate fields through interfaces. More quantitative
discussions are found in Refs. [14–16].

Fresnel’s equations, together with Snell’s law of refraction and the law of re-
flection, constitute the rigorous solution to propagate a plane wave through a plane
interface separating dielectric media with refractive indices n0 and n1. This rigor-
ous solution can be extended to a general incident harmonic field using the angular
spectrum representation [17]: an appropriate number of plane waves is propagated
individually through the interface and the resulting fields are superimposed after-
ward. The left-hand side of Fig. 3 displays the amplitude of a Gaussian beam after
internal reflection at a plane interface using this method. The simulation predicts
the Goos-Haenchen shift, though no evanescent waves were used in the simula-
tion. In case of a local plane wave approximation, which means that a local instead
of a global decomposition of the incident harmonic field into plane waves is applied,
the Goos-Haenchen shift is not predicted (see the right-hand side of Fig. 3). This
underlines the approximate nature of the local plane wave approximation even for
smooth harmonic fields. Comparison of the figures also shows that the critical angle
leads to a truncation of the beam for the local plane-wave model.

In what follows the propagation of a general harmonic field through a plane
interface is considered to be solved, and therefore to be available for wave-optical
engineering. Next we turn to the situation illustrated in Fig. 2. We restrict our



Frank Wyrowski and Jari Turunen 385

discussion to a plane incident field for the sake of simplicity. Moreover, we use
a 1D formalism (however, the generalization to 2D is straightforward). A plane
wave f0 = [Ex(x, z0), Ey(x, z0)] is to be propagated through the interface, and
the resulting transmitted field f1 = [Ex(x, z1), Ey(x, z1)] is of concern. Again,
the reflection mode of operation can be investigated analogously. As illustrated
in Fig. 4, the interface may be interpreted as being piecewise planar provided that
it does not contain abrupt transitions. In other words, we may identify an interval
[xI – �–(xI), xI + �+(xI)] around any point xI, and consider the interface planar
within this interval. The extent of this interval, that is �(xI) = �–(xI) + �+(xI),

Figure 3 The internal reflection of a Gaussian beam at a plane interface was simulated
by two different approaches, namely the global decomposition of the Gaussian beam into
plane waves (left) and the local plane wave approximation (right). The latter method is typ-
ical in thinking and practice for most optical engineers and laser physicists. The parameters
are: TM-polarization, λ = 632.8 nm, beam waist radius 2.5 µm, angle of incidence 50
degrees, n0 = 1.5, and n1 = 1.0. The resulting critical angle is 41.8 degrees.

Figure 4 Locally a smooth interface may be considered as planar: the extent of the plane
local substitute depends on the local curvature of the interface at xI.
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I

Figure 5 If we propagate a part of the plane field toward the interface h(x), it is often
possible to laterally restrict the major part of the propagated field to a local plane interface.
Because of diffraction it is never possible to do that rigorously. However, the smaller the
distance between z0 and the interface h(xI), the smaller the diffraction effects are for a
given section size �j. The section size itself must be adapted to the extent �(xI) of the local
plane interface. Thus, the relation between h(xI), �(xI), and �j determines the accuracy
of the approximation.

can be evaluated by basic mathematical means at any point xI. In case the incident
field f0 would be restricted to an approximately plane interface fraction around xI,
the propagation problem would be solved in an approximation, which is as good as
the approximation of the local planarity of the interface. Other approximations are
not involved. However, the incident field f0 passes the whole interface; thus, it is
not possible to take advantage of the local planarity of the interface directly. Fortu-
nately, it is possible to decompose the incident field in such a way that often allows
the local application of the plane interface solution of the propagation problem. To
this end we use the simple decomposition*

f0(x, z0) =
∑

j

f
(j)

0 (x, z0) =
∑

j

[
f0(x, z0)rect

(
x – xj

�j

)]
(1)

in the plane z = z0, with rect(x/�) = 1 for x ∈ (x–�/2, x+�/2) and rect(x/�) =
0 elsewhere. Equation (1) does not contain any approximation but expresses a lat-
eral decomposition of f0 into fractions f

(j)
0 . By a suitable choice of �j one can try to

restrict the size of the propagated f
(j)

0 to a plane part of the interface, as illustrated
in Fig. 5. Because of diffraction, that cannot be done rigorously, but often can be
done to a good approximation, as long as the modulation of the interface is smooth
enough on the wavelength scale.

* A similar decomposition is also possible on the interface itself, leading to other versions of local
plane interface approximation methods.
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Decomposition (1), in combination with the interpretation of the interface as
being locally planar, constitutes the basic ingredients of the local plane interface
approximation (LPIA). If we use the same arguments for a locally linear grating
instead of a locally planar interface, we obtain the local linear grating approxima-
tion (LLGA). In general, we refer to LEIA if we decompose a general propagation
problem through interfaces into various elementary ones by utilizing a field decom-
position of form (1) in combination with a local interpretation of the interface as an
elementary one, for which the propagation problem is solved.

Obviously it is not straightforward to determine the parameters of decompo-
sition (1) in such a way that all field fractions f

(j)
0 propagate through local plane

interfaces only. If we propagate f
(j)

0 to the interface, diffraction increases the size
of the field and typically it is larger than allowed by the corresponding �(xI). That
prevents us from choosing intervals �j small on the wavelength scale. On the other
hand, the larger we choose �j, the more results likely we are not able to restrict the
propagated f

(j)
0 enough in order to illuminate a planar fraction of the interface.

That is, we have the same problem as we have for too small �j. This basic argu-
mentation shows that LPIA is only applicable if the modulation of the interface is
smooth on the wavelength scale. A more quantitative discussion of the limitations
of general LPIA, and also a method to determine an optimum decomposition for
a given interface, is subject to further research. In what follows we simplify the
discussion by an additional approximation.

Let us neglect wave-optical effects for the short-distance propagation of f
(j)

0

from the plane z0 to the interface; that is, we propagate f
(j)

0 by geometrical op-
tics to the interface. Then, we obtain a direct relationship between the size �j and
the extent of the field f

(j)
0 on the interface as illustrated in Fig. 6, which may be

directly restricted to a plane section of the interface. Thus, locally we reduce the
problem to the propagation of a plane field through a plane interface. Also the
resulting transmitted plane field fragment is propagated to the plane z1 by geo-
metrical optics, and we arrive at the situation illustrated in Fig. 6. By a suitable
choice of intervals in the plane z = z0 we reduce the propagation of the plane field
through the general interface to propagations of plane field sections through plane
interface sections. We refer to this technique as geometrical optics LPIA. Because
the geometrical optics approximation is connected to an electromagnetic field rep-
resentation f = [Ex(x, z), Ey(x, z)], this method is suitable for WOE as long as
the approximation delivers the accuracy required in an application. Because we ne-
glected diffraction while propagating f

(j)
0 from z0 to z1, the distance z1 – z0 should

be small enough to provide sufficient accuracy in practice. A more detailed discus-
sion of geometrical optics LPIA can be found in Refs. [14] and [15]. A further
refinement that approximates the interface by local spherical fractions instead of
planar ones has been suggested [16]. In this method, Coddington’s equations for



388 Local Interface Techniques in Wave-Optical Engineering

Figure 6 Neglecting diffraction in the region between z0 and z1 provides a simple model
to propagate a section of the incident plane field through the interface. It is always possible
to choose the section �j small enough to ensure that the plane field passes a local plane
interface only. Fresnel’s formulas and Snell’s law of refraction can then be applied directly
to obtain the transmitted plane field, which is propagated to the plane z1.

spherical fields are applied instead of Snell’s law for plane waves. Mathematically
this technique can be understood as a higher-order Taylor expansion of the inter-
face. Thus it typically allows a lower number of sections in decomposition (1).

It is worth mentioning that the combination of geometrical optics LPIA with
a ray-bundle representation of the incident electromagnetic field leads to ray trac-
ing through the interface; it reduces to the basic technique in conventional optical
engineering.

Before presenting some numerical results, an important special case of the geo-
metrical optics LPIA should be discussed. Let us assume as a further approxima-
tion a paraxial situation: all characteristic angles with respect to the z-axis are small.
That includes a plane incident wave with a k-vector almost parallel to the z-axis and
an interface with small local slopes orthogonal to the z-axis, that is, a thin smooth
interface. Then, we may neglect the change of direction of f

(j)
0 when passing the in-

terface. Moreover, Fresnel’s equations provide identical losses in all sections. The
situation is illustrated in Fig. 7. Obviously, the propagation through the interface
reduces to the inclusion of the optical path from z0 to z1 through any xI in the phase
of f

(j)
0 . This technique is well known as the thin element approximation (TEA) and

is often also called paraxial or scalar approximation in grating theory [18]. It is a
scalar technique because the Ex and Ey channels become decoupled and identi-
cal. It is a paraxial technique because refraction at the interface is neglected. TEA
is the most popular technique in paraxial diffractive optics, even though it is the
lowest approximation level of LPIA [19]. It is based on geometrical optics and
the paraxial approximation. However, since it was originally connected to a wave-
optical field representation, it is commonly understood as a propagation technique
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Figure 7 In a paraxial approximation the refraction of the plane field fragment at the
interface may be neglected. Moreover, Fresnel’s equations provide identical contributions
for all plane field fragments. Then the propagation from z0 to z1 causes a change of the
phase of the field fragment only. This phase change is proportional to the optical path
calculated along a ray that passes straight through the interface from z0 to z1. This method
is called thin element approximation (TEA). It constitutes the lowest approximation level
of LPIA.

well suited in wave optics [18]. From a propagation-model point of view, the more
general geometrical optics LPIA is more accurate than TEA. But in combination
with a ray-bundle representation, it leads to the ray-tracing technique, which is
typically understood as less accurate than wave-optical modeling with TEA. This
makes it very clear that it is of fundamental importance to distinguish between
the modeling of a field itself and its propagation. Moreover, the possible use of
geometrical optics LPIA in WOE emphasizes that the electromagnetic field rep-
resentation is mandatory for modeling in wave-optical engineering, while physical
optics field propagation techniques are not always necessary. In what follows we
present some numerical results using geometrical optics LPIA.

To compare geometrical optics LPIA with a rigorous reference, we start with
the simulation of the propagation through a sinusoidal grating and investigate the
diffraction efficiency of the first order for increasing period d. Figure 8 shows the
results: the solid line describes the efficiency curve calculated using the rigorous
Fourier modal method (see Sect. 18.3). The dashed line is the result of geometrical
optics LPIA. For periods down to about five wavelengths it predicts the efficiency
very well. Between four and two wavelengths the tendencies are correct, and for
smaller periods geometrical optics LPIA fails, because the local curvature of the
sinusoidal surface profile becomes too small to allow the use of LPIA. The dotted
line represents the result obtained by TEA, which does not predict any dependence
of the efficiency on the grating period. This example shows that geometrical optics
LPIA constitutes a powerful extension of methods to propagate electromagnetic
fields through interfaces. Figure 9 shows analogous results for a blazed (triangular-
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Figure 8 TE mode efficiencies in first order of sinusoidal gratings (refractive index 1.5
embedded in vacuum) of different periods. Solid line: FMM. Dashed line: geometrical
optics LPIA. Dotted line: TEA.

Figure 9 TE mode efficiencies in first order of blazed gratings (refractive index 1.457
embedded in vacuum) of different periods. Solid line: FMM. Dashed line: geometrical
optics LPIA. Dotted line: TEA.

profile) grating. Because of the abrupt transitions in the profile of a blazed grating,
geometrical optics LPIA does not predict the accurate values even for rather large
periods. However, the values given by geometrical optics LPIA are much more ac-
curate than those given by TEA. Moreover, for a period of about five wavelengths,
internal reflection occurs and geometrical optics as discussed in this section does
not predict any transmitted light, that is, the efficiency falls to zero. However, rig-
orous theory shows significant efficiency for smaller periods. It has been shown
that this effect is due to multiple reflection of the internally reflected light and can
be qualitatively predicted also by LPIA if this multiple reflection is included in the
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model [20]. Both grating simulation experiments demonstrate the capability of
the geometrical optics LPIA to model the propagation of harmonic fields through
interfaces with high accuracy, as long as the interface does not possess local cur-
vatures strong enough to prevent a plane interface approximation. However, the
blazed-grating example shows that if critical locations such as abrupt transitions
appear only sporadically, the results are still reasonable.

Though the simulations for gratings are interesting, for a better understand-
ing of the limitations of geometrical optics LPIA, its particular strength lies in
the propagation through nonperiodic interfaces. Then grating theory is only ap-
plicable for very small structure details and we must rely on analysis by suitable
approximate techniques. Often the thin-lens approximation is used in wave-optical
simulations. However, we know already that this technique is restricted to paraxial
situations. As an example, we consider the propagation of a laser beam through a
spherical lens. The parameters are: a focal length of 100 mm; a lens diameter of
1.25 mm; a refractive index of 1.457; and the waist of an ideal Gaussian beam of
300 µm. We like to calculate the M2 beam parameter in the focal plane of the lens.
Therefore, as is typical in WOE, we need access to a wave-optical representation
of the electromagnetic field in the form of its complex amplitude, and thus we must
propagate the complex amplitude through the lens system. In the paraxial case the
resulting [2] factor is equal to 1 for TEA and 1.05 if we use geometrical optics
LPIA. This underlines the fact that TEA is a suitable model in the paraxial case.
Moreover, in the paraxial case a spherical lens performs well, as we know. Next
we change the parameters as follows: a focal length of 5 mm; a lens diameter of
3 mm; and the waist of the ideal Gaussian beam of 500 µm. Obviously, that de-
scribes a highly nonparaxial situation, but we still apply a spherical lens. Now we
obtain M2 = 1 for TEA and 2.74 if we use geometrical optics LPIA. TEA fails
completely and geometrical optics LPIA predicts the effect of the spherical aber-
rations due to the use of a spherical lens in a nonparaxial system. Figure 10 depicts
the spherical aberration directly after the lens, as calculated by geometrical optics
LPIA. Because of it geometrical optics, LPIA also leads to the expected shift of
the focal distance from 5 mm (TEA) to 4.7 mm.

The examples demonstrate that geometrical optics LPIA is suitable as an ap-
proximate propagation technique for gratings and other microstructured inter-
faces, as long as the appearance of details close to the wavelength do not become
dominant, and for wave-optical modeling of the propagation through macroscopic
smooth surfaces. Thus, it builds a bridge from diffractive optics to the modeling of
systems, which are of major concern in more conventional optical engineering. Be-
cause of their proven functionality, local plane interface approximations seem to be
powerful modeling techniques in the wave-optical generalization of optical engi-
neering. Though the geometrical optics LPIA as discussed here works well, it still
represents a low approximation level of the more general LPIA concept. Still to be
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Figure 10 Geometrical optics LPIA is used to determine the spherical aberration, which
occurs when a Gaussian beam propagates through a spherical lens with high numerical
aperture. The parameters are: focal length 5 mm, lens diameter 3 mm, refractive index of
lens 1.457, and waist of ideal Gaussian beam 500 µm.

investigated is an efficient technique not applying the geometrical optics approx-
imation, thus leading to a truly wave-optical version of LPIA to be formulated.
Moreover, the inclusion and role of multiple reflection and refraction should be
considered. Several ways to combine the fragments f

(j)
1 behind the interface exist

and need a more thorough understanding.
So far we have discussed the local elementary interface model considering a

plane interface as the elementary one. A very similar technique can be based on
local spherical interfaces [16]. The decomposition (1) is also the base for other
LEIA approaches, such as the use of a local linear grating as an elementary in-
terface. Also in the resulting local linear grating approximation (LLGA) we apply
locally the rigorous solution of the propagation of a plane wave through the el-
ementary interface (in this case a linear grating) and combine the resulting field
fragments together in a suitable manner. Some examples of LLGA are presented
in Refs. [20] and [21].

Next we turn to an approximation, the strength of which lies in the handling
of small features in interfaces. In the case of LEIA, we reduce our general prop-
agation problem by the assumption of laterally independent, elementary propaga-
tion channels, which is expressed by Eq. (1). The technique to be discussed does
not laterally decompose the incident field, but assumes an independence of the
response of the interaction of the incident field with laterally separated structure
details.
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18.6 Local Independent Response Approximations

The fact that sharp transitions of the physical properties of the diffracting ob-
ject have substantial effects in the diffraction pattern is well known, and well-
established theories based on this fact have been formulated [24]. Classically, this
Maggi-Rubinowich or Miyamoto-Wolf boundary diffraction method deals with
apertures in opaque screens. The diffracted field behind the aperture is presented
as a superposition of a “geometrical wave” and a perturbationlike contribution gen-
erated at the abrupt boundary of the aperture.

However, transitions of the profile height in a purely dielectric interface also
cause substantial perturbations in the transmitted and reflected fields. Recently
these have been considered quantitatively and a method that may be seen as an
extension of the classical boundary diffraction technique has been introduced. The
method is capable of dealing with transitions of any type [25]. Again the diffracted
field is expressed as a superposition of a geometrical wave, given by TEA, and per-
turbations caused by the transitions. The perturbations are evaluated by applying
rigorous diffraction theory.

Figure 11 illustrates rigorously calculated phase and amplitude profiles pro-
duced at the plane z = z1 by abrupt vertical transitions of different heights on an
otherwise planar interface. The dotted lines give the predictions of TEA, accord-
ing to which the amplitude remains constant and an abrupt phase shift occurs at
the interface, its magnitude being proportional to the surface step height. The solid
lines represent rigorously calculated results. Only the propagating part of the field
is considered and TE polarization (the electric field points in the y-directions) is
considered. In all cases, both the phase and the magnitude of Ey(x) contain rapid
spatial oscillations that are damped as one moves laterally away from the transition.

Rather similar though quantitatively different results are obtained in TM po-
larization (electric field perpendicular to the y-direction). We stress that corre-
sponding results can be obtained for transitions of arbitrary shape; for example
slanted, undercut, or smoothly shaped transitions, as well as narrow grooves or
trenches, can be analyzed. Different angles of incidence can also be considered.

The results presented in Fig. 2 are valid if the transition is an isolated feature.
However, they can also be applied to more general structures, provided that the
neighboring transitions are not too close to each other (local independent response
approximation, LIRA). Then any general structure consisting of an arbitrary num-
ber of individual features can be modeled using a superposition of the transmission
function provided by TEA with local corrections [26]. Therefore, LIRA turns out
to be a well-suited approach for the propagation of the electromagnetic field rep-
resented by f0 = [Ex(x, z0), Ey(x, z0)] through an interface that consists mainly of
transition-type features.
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Figure 11 Phase (left) and amplitude (right) of the y-component of the propagating
part of the electric field immediately behind abrupt vertical surface-relief transitions of
different heights, corresponding to phase delays of (a, b) 2π radians, (c, d) π radians, and
(e, f) π/2 radians in TEA (dotted lines). (Courtesy of T. Vallius.)

Mathematically, assuming a y-invariant structure and TE polarization, we have

Ey(x, z1) = ETEA
y (x, z1) +

J∑
j=1

Pj(x – xj, z1), (2)

where ETEA
y is the field given by TEA, J is the number of transitions centered at

x = xj. The perturbation terms are of the form

Pj(x, zj) =
{

ERIG
yj (x, z1) – ETEA

yj (x, z1), if |x| < �

0 otherwise
. (3)

Here ETEA
yj is the result given by rigorous theory for the transition and � is a trun-

cation parameter, which can typically chosen to be approximately 10 wavelengths.
It is important to note that the perturbation terms can be precalculated for all

different transition shapes found in the structure, and an archive of them can be
formed. As a result, the application of Eq. (2) is a simple numerical task, and
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the computation time does not depend on, e.g., the grating period as in rigorous
theory. Moreover, and very important, the method applies equally well to periodic
and nonperiodic structures. The high numerical efficiency also facilitates efficient
design of complicated profiles in the nonparaxial domain [27].

Figure 12 illustrates LIRA analysis of a 1 → 8 array illuminator. The phases
and amplitudes of the propagating part of the field Ey(x, z1) are plotted here using
both LIRA and rigorous diffraction theory, along with the diffraction efficiencies
of some central orders. It is seen that, although there are some differences in the
transmitted phases and (especially) amplitudes of Ey(x, z1) predicted by the two
methods, the far-field diffraction patterns are remarkably similar, which demon-
strates the power of LIRA as a numerically efficient simulation technique in wave-
optical engineering.

The approach presented above can also be extended to three-dimensionally
modulated structures, which again need not be two-dimensionally periodic
[28,29]. In this case one must pay attention to the orientation of the transitions

Figure 12 (a) Phase and (b) amplitude of the y-component of the propagating part of
the electric field immediately behind a binary 1 → 8 beam-splitter grating with a period
d = 50λ (solid lines: LIRA, dashed lines: rigorous theory). (c) The diffraction efficien-
cies of some central orders (solid bars: rigorous theory, empty bars: LIRA). (Courtesy of
T. Vallius.)
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with respect to the polarization state of the incident field to determine the transfor-
mation f0 → f1.

In general LIRA has been found to be a good approximation when the neigh-
boring features are at least ∼1–2 wavelengths apart, but this depends somewhat
on the feature shape.

18.7 Extensions to General Fields

Thus far we have considered fully spatially and temporally coherent harmonic
fields only. The LEIA and LIRA techniques can be extended to partially coherent
light in a rather straightforward manner, although the computational complexity is
of course increased.

Let us first consider essentially monochromatic but spatially partially coherent
incident fields. Such a field can be represented as a superposition of a partially cor-
related set of plane waves, in the same manner as an arbitrary fully spatially coher-
ent field can be represented as a superposition of fully correlated plane waves that
propagate in different directions [17]. The transmission of each such plane wave
is analyzed separately and the results are superimposed according to the original
correlations between the incident plane waves.

In the case of spatially coherent but temporally partially coherent beamlike
fields, as well as pulses, the analysis is best performed via the frequency domain
(the space-frequency domain field representation). The response is analyzed sepa-
rately for each spectral component of the incident field and the results are then su-
perimposed to get the temporal response by Fourier-transform techniques. In this
process the superposition depends on whether coherent pulses, stationary fields,
or nonstationary fields between these two extremes are of concern. In the case of
conventional pulses, different frequency components are fully correlated, but in the
case of stationary fields, they are completely uncorrelated.

18.8 Conclusions

In this paper we have described a class of approximate methods to analyze wave
propagation in almost arbitrarily complex optical systems. These methods are
based on local application of rigorous diffraction theory to connect the fields at
planes on the input and output sides of the interface. Propagation from the output
plane of one interface to the input plane of the next one can be treated by geo-
metrical optics or by wave theory, depending on the field. Combination of LEIA
and LIRA appears attractive and is a subject of further research. We believe that
the methods presented here will form the backbone of much of the wave-optical
engineering modeling in the future.
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An Honor and a Pleasure

We became aware of Professor Wolf ’s unparalleled contributions to theoretical op-
tics as soon as we started our own scientific careers in the mid-1980s, learning to
know him as the father of modern coherence theory, among his other outstanding
achievements. It has long been a source of amazement for both of us how anybody
can produce a flow of groundbreaking publications for half a century and still be
as productive as ever.

In late 1980’s we both had the honor to meet Professor Wolf personally for
the first time, and were truly impressed by his character. We had great pleasure
to invite Professor Wolf as the Guest of Honor to the European Optical Society
Topical Meetings on Diffractive Optics in 1995 (Prague) and 1999 (Jena). One of
us (JT) greatly enjoyed having him as the plenary speaker and the Guest of Honor
in the 2003 major event of the International Commission for Optics, the ICO
Topical Meeting on Polarization Optics, and showing his “castle” to Professor
Wolf and his lovely wife, Marlies. Since Professor Wolf refused to follow his wife
into the underground prison cell/torture chamber of the castle on the guided tour,
it must be concluded that he has no plans to retire from scientific work!

It is a great pleasure for us to notice in our own recent activities that Profes-
sor Wolf ’s pioneering theoretical work on coherence theory is rapidly becoming
recognized as belonging to the basic toolbox of a modern wave-optical engineer.
Modeling light sources as being fully coherent or incoherent is simply no longer
adequate in a large number of industrial applications.

Professor Wolf ’s unique discoveries and ideas will influence the development
of optics of this century in ways that are yet to be seen.
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CHAPTER 19

BACKWARD THINKING:
HOLOGRAPHY AND THE INVERSE

PROBLEM

H. John Caulfield and Michael A. Fiddy

19.1 Introduction: Inverse Problems

The dominant paradigm of holography is best expressed through communication
theoretic concepts. Ultimately, this is permitted by placing the information of in-
terest on a spatial carrier wave. The information recorded in a 2D plane relates
to a wave emanating from a 3D scattering structure. This fact has tied hologra-
phy to inverse problems at frequencies for which phase information is tough to
record otherwise. Emil Wolf was the first to suggest using holography to solve in-
verse scattering problems [1] and Hank Carter confirmed the usefulness of his
analysis [2]. The inverse problem and its relation to holography has been largely
neglected for the past three decades. This is true for both quantitative imaging of
scattering obstacles and for the synthesis of scattering structures. We argue here
that there are strong reasons present now, that were not present 30 years ago, to
reinvigorate this connection to inverse problems. We must extend it well beyond
the weak scattering case that Wolf was able to solve analytically. Strong scattering
problems will always be ill-posed, meaning that solutions may not exist, or may be
ambiguous or highly unstable, so exact solutions are precluded. However, good
solutions can be obtained in situations where an optical readout appears to give
poor results.

How does one solve inverse problems? As you read this page, you are aware of
only a small fraction of the effort your brain must make to accomplish this. Your
eye forms an image on your retina where it is detected with a very nonuniformly
spaced set of detectors of various sizes. But you never see that detected pattern of
pixels. You do not see the 2D pattern at all. Instead you see a moving, colored,
smooth 3D world. You see your brain’s solution to the inverse problem. Like most
inverse problems, perception from vision is an ill-posed problem. That is, there

401
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Figure 1 Desperate to show you a 3D scene, your mind has trouble with this singular
(ambiguous) drawing. Which vertex is closest to you? Are you sure? Can you see both
interpretations simultaneously? Can you force yourself to see this as only a flat drawing?

are infinitely many 3D scenes that could have caused the detected pattern on the
retina. The brain must persuade you that one of those is really there, but which
one?

Figure 1 illustrates the problem very clearly. What should you see? What do
you see? You may not see the truth—a collection of squares and straight lines in a
plane. You are most likely to see it as a 3D wire diagram. But it could equally well
be either of two such figures. Your brain protects you from ambiguity by making
definite decisions. In cases like this one, you see only one interpretation at a time,
but what you see switches back and forth between the two 3D interpretations. It is
extremely hard to avoid seeing the 3D figure and simply see it as flat.

One would expect that there has to be some irreversible loss of information
in the projection of a 3D scene into a 2D image. Some great scientists apparently
believe that holography overcomes that problem. They join the vast majority of
nonholographers who believe holograms do magic. Of course they do not. The
only way to overcome that loss is to inject information into the inversion step, e.g.,
by computation. If the information we inject is correct, our inverse solver is likely
to be accurate. If the information we inject is wrong, all bets are off. Your vision
processor offers some lovely illustrations of the errors resulting from incorrect as-
sumptions. One of its assumptions is that light travels in a straight line from the
object to the eye. This allows us to see virtual images where no “real” image exists.
But it also causes us to see sticks bend as they enter the water and people to appear
on the other side of the mirror from us. Your visual processor knows nothing of
Snell’s law or of reflection.

So now you know the following things about inverse problems:

(1) Brains do them quickly and well most of the time.
(2) The problem is ill posed or singular. There is not enough information to

get an unambiguous answer.
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(3) The only way to solve the singular inverse problem is to inject informa-
tion directly or through constraints (i.e., using prior knowledge about the
propagation of waves, the anticipated shape of objects, the type of noise,
etc., referred to as regularization).

(4) If we make the correct guess about the injected information, our solutions
are often fairly good. But, if our assumptions are wrong, our solutions may
be nonsense. There really was no one on the other side of the mirror when
you looked into it this morning.

These are quite general remarks that apply in all fields. They are mathematical
laws, not physical ones.

19.2 2D Holograms of 3D Scenes and the

Holographic Principle

Much intellectual mischief has come from not understanding what is discussed in
this section. It is tempting to believe that holograms are magic, i.e., that they can
produce more information than they record; however there is no getting around
two facts.

First, there is more spatial information in a 3D volume than there is on a 2D
surface surrounding that volume. The minimum meaningful area is about a wave-
length squared and the minimum meaningful volume is about a wavelength cubed.
Doubling the radius of a sphere increases the surface area by 4 and increases the
volume by 8. If you reject magic, you realize that there is a conceptual problem
here somewhere. Holograms routinely produce optically perfect copies of some 3D
scenes. Reconciling those observations is critical to the understanding of hologra-
phy and the inverse problem.

Consider current black hole theory. For convenience, consider a spherically
symmetric black hole whose event horizon is a sphere. We do not know much about
what is inside a black hole, but we can reason about the entropy change when it
absorbs new material. It is provable and universally accepted that the information
(negentropy) content of a black hole is essentially equal to the number of minimum
meaningful areas (Planck length squared) that is required to tile the event horizon
sphere. The 3D internal structure has no more information than is contained on
the 2D surface. Magic of some sort has occurred. This turns out to be profoundly
important and extremely surprising in cosmology. Not understanding either how
holograms work or the details of the solution to the inverse problem in holography,
cosmologists call this the Holographic Principle.

The hologram analogy is clear since the amount of spatial information in a
2D hologram cannot exceed the area divided by the minimum meaningful area
(a wavelength squared), yet it produces lovely 3D images. Apparently magic is
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possible after all. The Holographic Principle holds that the universe is like a holo-
gram, in that our seemingly 3D universe could be virtual, reconstructed from fields
and constrained by laws, that are confined to a distant, vast surface. Support for this
concept comes from studies of black holes and arguments that the maximum en-
tropy or information content of any region of space is defined not by its volume but
by its surface area. How much information can be contained in a region of space
is derived by considering a spherical distribution of matter contained by a surface
of area A. For a black hole having an area of A Planck areas, one can show that it
has A/4 units of entropy [3]. Since entropy is not supposed to decrease, then the
original distribution of matter confined by a surface A also had no more than A/4
units of entropy of information.

Recall that a hologram records the means by which a wavefront that can pro-
duce a 3D image is carved out of a very specific reference beam—a concept inde-
pendently called the Michelangelo Principle* by Caulfield and Yuri Denisyuk (see
Ref. [4]). The hologram, the reference beam, and the wave equation conspire to
solve the inverse problem jointly. The hologram encrypts the wavefront. The ref-
erence beam decrypts it. The wave equation works out the consequences of the
wavefront. One of the pieces of information that must be injected to solve the in-
verse problem, therefore, is the detailed specification of the reference beam. Get
it wrong, and the 3D object inferred by our inverse solver will be wrong. We will
return to this point subsequently when we discuss ultrasonic holograms. Note that
the usual way we use a hologram to produce a 3D image is simply a specialized
optical processor designed for that purpose. Optical computing is the heart of con-
ventional holography.

Other assumptions are also being made in conventional holography. They are
usually but not universally correct. The most obvious assumption made in con-
ventional hologram viewing is that the index of refraction of the medium in which
the object is located is uniform. Even if the object is transparent (a situation we
will encounter in ultrasonic holography), we still make that implicit assumption.
Sometimes that assumption is quite wrong. The object and surrounding medium
may contain index variations and hence refraction that can render the solution to
inverse problem invalid. In other cases, this assumption is so drastically wrong that
our inverse solver gives pure nonsense. Emmett Leith dealt with that case very
cleverly several decades ago [4]. Consider the situation sketched in Fig. 2. The
light from the object passes through a diffuser en route to the hologram plane. An
optical solver of the inverse problem in this case does not produce a recognizable
image of the object as suggested in Fig. 3. Leith figured out, however, that the ex-
tra information needed to recover the image information could be inserted into the
optical computation by reinserting the diffuser in its proper location, as suggested
* Recall that when asked how he could carve such spectacular statue, Michelangelo replied that he

simply chipped away the parts of the marble that did not belong to the statue.
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Figure 2 An object (O) hidden behind a diffuser (D) can produce a hologram (H) that
does not yield to the simplest inverse problem solver.

Figure 3 The usual inverse problem solver makes the same assumption your brain
makes—that light travels in a straight line from the object to the detection (hologram)
plane. Because that assumption did not apply to the situation in Fig. 2, the actual object
shape is not recovered.

Figure 4 To recover the object information, we need to insert the missing information
(in this case, it is inserted physically into the optical processor).

in Fig. 4. This technique has been called optical phase conjugation. It recovers
the object information rather well, but imperfectly—as pointed out by Wolf [5] in
what was once a controversial but is now universally acknowledged observation.
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Thus, there are clearly cases in which the Holographic Principle does not ap-
ply. But, there are also cases where it does apply, and Wolf was the first to point
this out. Under appropriately restricted circumstances (far field, weak scattering,
etc.) the 3D Fourier transform of the object and hence the object itself can be re-
covered from the 2D recorded wavefront. Well, that is almost the Holographic
Principle, if you allow for the fact that the hologram does not record the wave-
front but allows it to be reconstructed by insertion of a priori information about
the recording reference beam. Likewise, it is possible to reconstruct an optically
accurate image of a 3D opaque object from that wavefront. The critical thing to
notice is the phrase “optically accurate.” Our colleague Joseph Shamir has devoted
considerable attention to the reconstruction of 3D images from a 2D wavefront,
and our treatment is essentially equivalent to his [6]. It is rearranged somewhat
to show how the “magic” of recovering a 3D image from a 2D wavefront can oc-
cur.

An open problem, however, is when we wish to reconstruct information about a
penetrable scattering 3D object. Here, we can recover the wavefront at the surface
of the object but inverting the multiply scattered waves to infer structural infor-
mation about the object is hard. This is clearly an ill-posed problem since without
prior knowledge, many objects could be consistent with such data. In conventional
holography (whether the inverse problem is solved by an optical computer or an
electronic computer), the mechanism enforcing a no-magic dictum is scattering
and diffraction. It is not that diffraction must be used in image reconstruction (al-
though it normally is). Rather, it is that scattering and diffraction were involved in
the formation of the hologram, and diffraction limitations were there from record-
ing onward.

Let us consider a sphere of radius r � λ, where λ is the wavelength. It contains
M = 4πr2/λ2 spatially resolvable pixels. The sphere contains N = 4/3πr3/λ3 op-
tically definable voxels. The critical number is the ratio N/M = r/λ � 1. By hy-
pothesis, the number of resolvable elements in the recovered 3D image is about M,
not N. Only for an F/1 system is the recoverable voxel of volume λ3. For all other
image voxels, the volume is greater than λ3. Roughly, for F-number K, the voxel
is an ellipsoid of radius Kλ and length K2λ. Roughly V/λ3 = K3. As most im-
age voxels will have K � 1, it is not at all surprising that a 3D image with voxels
larger than the minimum can be recorded on a 2D surface using minimum sized
pixels.

Not being experts in general relativity, we cannot assert that the Holographic
Principle for black holes can be resolved in the same way; but it is not unreasonable.
It would amount to asserting that space itself is stretched inside a black hole so that
the minimum meaningful voxel volume becomes much greater than the cube of
the Planck constant.
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19.3 Paradigms of Holography

Perhaps only Claude Shannon had more influence on communication theory than
Dennis Gabor, the inventor of holography. The two great reinventors of hologra-
phy, Yury Denisyuk and Emmett Leith, independently employed that interpreta-
tion [4]. The world sends a message over a noisy channel—a recording medium.
That medium has a channel capacity

C = Nlog(1 + SNR), (1)

where N is its space-bandwidth product (A�/λ2) and SNR is the achievable sin-
gle pixel signal-to-noise ratio. That is, it can support almost perfect recording of
an image with information content C, if that message is ideally encoded. Holog-
raphy (particularly diffuse light holography of a distant object) is regarded as an
almost perfect encryption. The decryption has the wonderful property of being
performable by optical computing. The decryption “key” is the re-enactment of
the recording situation (geometry, wavelength, etc.). Duplicate those, and good
optical decryption is assured.

There are, however, many other paradigms and explanations of holography.
Profs. Lohmann, Leith, Denisyuk, and we have long lists of valid interpretations,
as different people require different explanations before they can understand holog-
raphy easily or they arrive at its elegant reality from different perspectives. Exam-
ples include regarding the readout of a hologram as recovery of an autocorrelation
function, or information storage in a hologram being possible only because a refer-
ence wave ensures minimum phaselike properties [7].

One of the interpretations is due almost entirely to our honoree, Emil Wolf.
That is the view that holography allows the recording of a complex wavefront com-
ing (ultimately) from an object, and the object details can be recovered from that
wavefront by solving the inverse problem—finding out what object had to have
been there to have caused the observed wavefront. In general, a computer must be
used. Although Wolf ’s theory [1] and Carter’s test of his theory [2] worked bril-
liantly, the significance of holography in inverse problems has been largely dormant
within holography ever since, as mentioned earlier. We note that using holograms
to store and retrieve the degree of coherence of a partially coherent field was ad-
dressed by Wolf et al. in 1999 [8]. Also, somewhat related to this, the inverse
scattering problem for strongly scattering media, namely determining the spectral
density of refractive index fluctuations in isotropic random media, was solved using
measurements of the degree of coherence of the incident and scattered field [9].

We argue here that so much has changed in the last 30 years that a reexamina-
tion of the optical decryption of a holographically stored wavefront deserves to be
revisited. In simple problems, holography provides a solution to the inverse prob-
lem that is indistinguishable from, and exactly what one would expect from, the
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communication theory approach. In hard problems, specifically those for which
there is not a simple relationship between the scattering properties of an object and
the wavefront recorded holographically, an inverse problem solution may be the
only way to recover useful object information.

19.4 The Inverse Scattering Problem and Experimental

Data

The inverse problem is a favorite among mathematicians because it is very chal-
lenging and good solutions are elusive except for relatively trivial problems of
weakly scattering penetrable obstacles (the first Born approximation) or those
for which permittivity fluctuations are slow on the scale of the wavelength being
employed (the Rytov approximation) [10,11]. Methods are often problem spe-
cific and hard to implement numerically. Amazon.com gave 20 book titles when
searched for “inverse problems.” Google gave over one million web sites in re-
sponse to the same search goal. There is a vital journal devoted to what its title
suggests “Inverse Problems.”*

A connection between an inverse problem and holography is described here.
Building on classical optical concepts and the Fourier-based models that are so
pervasive in treatments of communication theory and holography, one can write

F(x, y) =
∫ ∫

f (u, v)exp[–ik(ux + vy)] du dv, (2)

where F is the (far) field scattered from a weakly scattering obstacle f and k is the
wavenumber. The wavefront F is complex, requiring both amplitude and phase
information to be described fully. An assumption leading to this integral is that the
field emerging from the scattering object is well approximated by the product of
the incident field (conveniently chosen to be a plane wave) and the complex trans-
mittance of the obstacle. Herein lies a fundamental problem, namely that except
for relatively large-scale features (large on the scale of a wavelength) in a relatively
thin object (i.e., thin in the direction of propagation on the scale of the wavelength),
this relationship does not hold. It is a remarkable fact that it serves us so well un-
der a wide range of experimental situations, when on closer inspection, one might
argue from a theoretical standpoint that it should not! By interfering F with a tilted
plane wave, P, a square-law recording medium captures the amplitude and phase
of F in a real modulation of the recording medium, allowing recovery of f by op-
tical computation of the Fourier transform of |F + P|2, i.e., by scattering from the
hologram, provided its features satisfy those same properties listed above.

* (http://www.iop.org/EJ/S/1/NAL004900/journal/0266-5611)
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A more exact statement of the properties we demand of f , is that on passing
through the scattering object, f , only weak, or more exactly, single scattering takes
place. It is this condition that allows one to represent the exit field as a product of
the incident field with a transmittance. When this is not the case, and in principle
it hardly ever is, then the integral equation of scattering indicates that the recorded
scattered field is actually given by

F(x, y) =
∫ ∫

f (u, v)FT (u, v)exp[–ik(ux + vy)] du dv, (3)

where one can write FT = �/�0, �0(u, v, k) is the incident wave, and �(u, v, k)
is the total field within f [10]. Clearly, when � = �0 we satisfy the first Born
approximation, and Eq. (3) reduces to Eq. (2).

Intuitively the nature of Eq. (3) is not surprising, since when multiple scatter-
ing occurs in an obstacle, emerging wavefront modifications arise with potential
ambiguity as to their origin. This is precisely the difficulty in solving the inverse
problem. In some communication problems, signals are severely corrupted by mul-
tipath and noise but a model for the channel can often be developed, allowing a
deconvolution or optimization problem to be solved, which permits the restoration
of the information of interest. This is not so straightforward in 2D and 3D (i.e.,
imaging) problems because of the inherent nonlinearity of the equation above, as
� the total field depends on f .

Holography provides a possible solution to this challenging inverse problem,
like no other. Consider a scattering obstacle f that varies only slightly over a range
of wavelengths �λ. Knowing �λ, one can make a succession of holograms in
this wavelength range, and reconstruct a set of “secondary source” functions,
f (u, v)FT (u, v, k), from each one. Since f is approximately constant through this
ensemble, and the set of FT (u, v, k) are essentially random functions, a dynamic
sweeping of the optical frequency over �λ should reveal the fixed features of the
object f .

When a hologram is made, the field emerging from the obstacle is scattered
through 4π steradians, but only the part falling on the recording medium is easily
recoverable. If one were to locate a recording medium around the entire scatterer,
then for a given incident field direction given by r0, data on f (u, v)FT (u, v, k) lie
on the Ewald circle (or sphere in 3D) indicated below in the uv domain, or k-space
as it is often called. This has been elegantly described by Emil Wolf in both his
original paper and several since [11,12].

In Fig. 5(a) we indicate the data measured from a single backscatter or mono-
static experiment and in Fig. 5(b) how changing the wavelength of the incident
wave varies the locus of data points in k-space. Changing the direction of the in-
cident wave and changing the incident wavelength allow a multiplexing of infor-
mation about f (u, v)FT (u, v, k) to be intercepted and recorded holographically, but
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Figure 5 The Ewald sphere analysis.

this still represents only a limited covering of k-space, given the finite physical size
of the hologram. This inevitably limits the information one can hope to retrieve
about f and contributes to the ill-posed nature of this kind of inverse problem as
mentioned earlier. This is precisely the case even when the first Born approximation
is valid, but frequently when dealing with a very weak scatterer, sufficient informa-
tion is recovered about f that this low-pass filtering can be overlooked. Also, if
optical decryption is employed, the eye-brain processor can often be relied upon
to incorporate prior knowledge of f and thereby appear to recreate a better recon-
struction than it perhaps would be if a crude measure like a mean square error were
the criterion for judgment.

19.5 Resolution, Phase, and Evanescent Waves

When Wolf pointed out, for example, that evanescent waves are not recorded (in
the vast majority of holograms, anyway), it caused a great uproar in the optics com-
munity that puzzled Wolf and us. Many years later, we realized why. Part of the
mystique of holography is that it records the whole of the information and leads
to optically perfect copies of the object. The consequences of Fig. 5 should dispel
that. A sponsor of our work on ultrasonic holography was shocked to learn that op-
tical reconstruction of the wavefront (even if it were done at the proper far infrared
wavelength to match the recording ultrasound wavelength) would produce only a
restricted image of the object, because of the data truncation and noise. The fact
that many holographic reconstructions look so good, is in part because when view-
ing by eye, as mentioned above, we are quite forgiving about noise and our brain
employs a lot of prior knowledge in interpreting what we see. We appear to pro-
duce a fairly accurate image of a penetrable object that exists in a uniform index
of refraction environment. That object, however, is not the physical object, as we
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explained above. Even using diffuse illumination, i.e., a large number of incident
wavefront directions, the associated spatial multiplexing that occurs is still limited
by the extent of k-space captured by the hologram, which in turn dictates the reso-
lution achievable in the reconstruction. It is this limited resolution, or more exactly
the point spread function associated with the geometry of the hologram, that can
make the separation of the twin images encoded by the hologram so difficult, even
when numerically rather than optically decrypting. Also, it is well known [13],
that over a finite range of incident field directions, classes of weakly scattering
structures exist that are nonscattering scatterers, and hence would not contribute
to the hologram. This is a concrete example of the lack of uniqueness associated
with inverse scattering problems.

We also note here that Wolf and Gbur have shown recently that the scattered
field in the far field, F, or the scattering amplitude, can be calculated in a stable
fashion from the complex amplitude measured over a plane at an arbitrary distance
from the scattering object [14] without the need to include evanescent waves. An-
other important observation is that within the limits of the Rytov approximation,
object recovery is possible when a hologram cannot be made by using two scattered
field intensities at two closely spaced planes beyond the scatterer [15]. A compari-
son between the first Born and Rytov approximation can be found in Fiddy [10],
and Cairns and Wolf [16].

19.6 Broadening the Concept of Holography

There are several reasons to believe that what Prof. Wolf started will become a
major part of a broadened definition of holography. We list some of those reasons
below (in no particular order).

(1) Moore’s Law has worked ever since Wolf ’s papers and it shows no signs
of failing. Computers are much faster, smaller, and cheaper than when he
first suggested solving the inverse problem using holograms. Moore’s Law
looks good until at least 2010.

(2) Special computer hardware, such as DSP (digital signal processor) chips
and Xyron’s ZOTS (zero overhead transaction processor,* have sped up
computations even more.

(3) Algorithms have improved dramatically. The critical Fourier transform op-
eration has moved from the super fast FFT to the even faster FFTW.†

(4) Digital image processing is far advanced since Wolf ’s paper, providing us
with tools that improve the resulting image.

* (http://www.xyronsemi.com/xnews.shtml)
† (http://www.fftw.org)
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(5) 3D displays unimaginable then are on the market now, allowing a dramatic
viewing of the computed image.

(6) Image compression has improved tremendously, allowing us to send even
complex 3D images anywhere we wish at quite low bandwidths.

(7) Optical processing has continued to evolve and the technology has become
more sophisticated, allowing all-optical processing of information to be
more easily realized.

The problems that can benefit from a deeper look at the relationship between
holography and a wider class of inverse problems are becoming clearer and we
examine them next.

19.7 Holography in Other Fields: Ultrasound

Invented soon after Gabor’s work by Hungarian Paul Greguss [17], ultrasonic
holography has never quite lived up to the hopes we all had for it. Ultrasonic
holography would be vitally important if it could yield beautiful 3D images as
light does. Here are some of the reasons.

(1) Ultrasound penetrates metal, flesh, plastics, etc., so it can look inside things
that are opaque to the visible part of the electromagnetic spectrum.

(2) Unlike other penetrating means, such as x rays, ultrasound is not danger-
ous at the insonification levels needed.

(3) Ultrasound measures properties of soft tissues such as impedance and ve-
locity that may be far more valuable in medical diagnosis than, say, x-ray
opacity.

Unfortunately, ultrasonic holography has been dominated by the wrong paradigm,
namely optical reconstruction. As a result, it does not fulfill its promise. The prob-
lem should be clear to any holographer who has read thus far—optical reconstruc-
tion of a wavefront from a hologram formed in ultrasound has a huge ratio of
recording-to-reconstructing wavelengths (by a factor of about 1000). This leads
to a demagnification factor of about 1000 in an optically decrypted visible image.
That problem is avoided in the lateral directions by using a lens to form an image
plane hologram. But the image is “squashed” in depth by about 1000. Depth infor-
mation is gained by viewing holograms of images taken at multiple depths through
the object (achieved by moving the object relative to the system or moving the sys-
tem with respect to the object). A human observer of such a sequence of 2D slices
(tomograms) in real time can imagine what the 3D object might look like, but the
hologram produces no useful 3D image. One is reminded of the pioneering work
of Hildebrandt, who developed a medical imaging system based on the interfer-
ence on a water surface of scattered ultrasound from a submerged human body
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Figure 6 This figure shows a second plane recovered from the same holo-
gram—something quite new to ultrasonic holography. Indeed any plane can be viewed
using a single hologram, just as is done in optical holography.

with a reference wave. Light scattering, even at grazing incidence off the ripple
pattern, produced severely compressed optical images. Much simpler ultrasonic
cameras based on A-scans or B-scans are available, so why bother with ultrasonic
holograms?

The obvious way to avoid that problem and get beautiful 3D images from a
hologram is to apply a numerical inverse problem solution at the same (virtual)
wavelength as used in recording. In the computer, half-millimeter waves are as
visible as half-micron waves. Actually, computer images are better in that they are
easier to manipulate, store, transmit, compress, search, etc., than optical images.
Moreover, once holograms have been made at several wavelengths, one can in
principle reconstruct an ensemble of images of f (u, v)FT (u, v, k) and extract the
common function, the desired image, f . It is assumed that the scattering parame-
ter of interest, such as impedance, is not frequency dependent over the wavelength
range used. With ultrasound, tissue is highly multiply scattering and both longi-
tudinal and shear waves add to the complexity of the inverse problem, the tissue
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requiring a tensor description. Nevertheless, 3D images of good quality should be
amenable to extraction from such data.

Several years ago, one of us (HJC) began work on this topic at the Karmanos
Cancer Institute in Detroit. Lacking a suitable detector array, we went to discrete
arrays of transducers that are spaced much greater than Nyquist in both directions.
We placed those arrays on “paddles” that could be used to enclose the regions of
the breast where cancers were most likely to occur. Then we transmitted ultrasound
from various transducers one at a time and received the transmitted sound on all
transducers on the other paddle. We then reversed the roles of the two paddles.
The resulting data set was then subjected to an inverse problem solver injecting all
of the a priori data available, in compliance with what any Bayesian would expect.
The resulting tomograms were remarkable (Fig. 7).

Figure 7 On a microcalcification phantom, a medical B-scan gave the image (a), while
reflection inverse solution gave (b). On a cyst phantom, medical B-scan gave (c), while
transmission inverse methods gave (d).
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Since then, we have been engaged in building a suitable transducer array to
allow direct recording of the amplitude and phase of the sound wave at any instant.
The inverse problem for this hologram will be easier to solve and perhaps lead to a
medically interesting system.

The potential of using holography to solve strongly scattering inverse problems
with microwave radiation or the recently popular THz waves, for seeing through
walls and dielectric media follows the same logic as for ultrasound.

19.8 Electron Holograms

Gabor invented holography as a means to obtain good electron images. An electron
hologram is an interference pattern between the scattered object wave, F, transmit-
ted through the object and a reference wave passing (ideally unchanged) through
the field-free vacuum and the object itself. For a weakly scattering situation, the
recorded hologram is |F + P|2 = |F + �0|2. In other words, the reference wave
is assumed to be the incident wave. For a strongly scattering obstacle this is not
going to be the case. Since field emission transmission electron microscopes are
commercially available, electron holography has become quite feasible. They are
used to study electromagnetic microfields such as the magnetic fields of ferromag-
netic nanowires or of thin ferromagnetic films. Unlike the wavelength-difference
problem described above for ultrasound, Gabor seems to have envisioned optical
reconstruction with its attendant huge magnification. This is extremely appeal-
ing and much work has been done to try to introduce a scattering structure that
would produce an off-axis reference beam without the associated electron charging
and perturbations that go with it. With or without an off-axis reference wave, the
appeal of an electron hologram, optically decrypted, is enormous. The hologram
wavefronts can always be numerically reconstructed to give the phase and ampli-
tude variations of the transmitted electron wave with respect to an unperturbed
reference wave. The application of inverse solutions to electron beam holograms
appears to have been pioneered by Lichte [19–24].

19.9 Conclusions

In this paper we have built on the pioneering work for our honoree, Emil Wolf, in
connecting holography to solving inverse problems. We have examined how holog-
raphy remains a powerful tool for a much broader class of strongly scattering and
severely ill-posed problems than might have been considered to date. Recovery
of weakly scattering obstacles or thin masks or slowly modulating media or sur-
faces, permits a straightforward recovery of object information from the inversion
of the information about the wavefront stored in a hologram. Essentially, this in-
formation can be backpropagated into the object domain either numerically or by
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optical computing/decryption. The function recovered in the object domain is not
simply related to the object itself for more strongly scattering structures, and the
solution of this all-pervasive inverse problem has made little progress over the last
30 years. Methods relying on iterative Born techniques, modified gradient meth-
ods or higher-order Born and Rytov approximations have proved numerically chal-
lenging and still somewhat limited in their range of applicability. The inevitable
problem of limited noisy data from which to work, adds to the ill-posed nature
of all inverse problems, and the finite size of a hologram and its associated noise
impact holographic inversions also. However, the fact remains that a hologram
conveniently captures relevant wavefront information, which then forms boundary
conditions, so to speak, on how that captured wave, albeit of limited extent and
quality, propagates to and from the three-dimensional object domain. Varying the
incident wave direction and wavelength allows considerable additional information
about the obstacle to be gathered, and in compliance with Bayes’ two laws that
were introduced here, offers numerical or optical computational opportunities to
solve this inverse problem. Ensembles of images registered and overlaid in 3D will
build up an image of f , while the field term, FT , rather like a bipolar noise term,
averages out. Moreover, when recording holograms using waves other than elec-
tromagnetic waves, the same remarkable possibilities exist. Indeed, when recording
holograms using wavelengths shorter than visible radiation, dynamic reconstruc-
tions employing visible wavelength sweeping may provide visually stunning 3D
images of strong scatterers, on a time frame with which numerical electronic com-
puting, as opposed to analog optical computation, can never compete.

By thinking backwards, with respect to the information content of a hologram,
Prof. Wolf ’s ideas have, and will continue to move us forward!
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An Emil Wolf Anecdote

I can now publicly tell the story of how, without even knowing it, Emil saved my
job over 35 years ago when he was already the most prominent opticist in the world
and I was a neophyte researcher at Texas Instruments Incorporated (TI). What has
changed to allow this is the publication by Sean Johnston of the story of George
Stroke and the history of holography.* That article chronicles some of Stroke’s
efforts to claim credit for other people’s work in this field.

I had just published something called “Local reference beam holography.” It
was clever work and, as I later found, invented in parallel by my friend Tom Cathay.
The day after my paper was published, the Director of Central Research at TI
called me into his office for an important conference.

He announced gravely that a prominent professor had accused me of stealing
his work.

“Don’t tell me. Let me guess,” I said. “Is that professor’s name Stroke?”

Being convinced now that the charges against me were true, he said, “Yes, you
must know of his work in the area of your paper.”

“No, I know of no work of his in this field, but I do know of him,” I replied. “He
likes to claim other people’s work. Let me show you what the most prominent opticist
in the world said.”

I then brought him a copy of Emil’s review of George’s newly issued book on
holography in the Journal of the Optical Society of America. It said in part: “This
sort of referencing, which presents unsupported claims and not real references at
all evokes a question of ethics. The reader should reflect on the scientific climate
that would be created if other authors were to adopt shuch a way of referencing.”

My job was saved.

While others praise Emil for his brilliance and the fact that he is a nice human
being, I want to praise him for the courage to say the truth even if it seemed risky†.
* S.E. Johnston, “Telling tales: George Stroke and the historiography of holography,” History and

Technology 20, 29–51 (2004).
† Mary Warga, the late Executive Director of the Optical Society of America, searched long and

hard for someone of such distinction and integrity to write that review.
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CHAPTER 20

SEVERAL CONTROVERSIAL TOPICS

IN CONTEMPORARY OPTICS:
DISPERSIVE PULSE DYNAMICS

AND THE QUESTION OF

SUPERLUMINAL PULSE

VELOCITIES

Kurt E. Oughstun

20.1 Historical Development of Dispersive Wave Theory

Early considerations of the wave theory of light represented the optical wavefield as
a coherent superposition of monochromatic scalar wave disturbances. Dispersive
wave propagation was first considered in this manner by Sir William R. Hamil-
ton [1] in 1839, when the concept of group velocity was first introduced. In that
paper, Hamilton compared the phase and group velocities of light, stating that [1]
“the velocity with which such vibration spreads into those portions of the vibratory medium
which were previously undisturbed, is in general different from the velocity of a passage
of a given phase from one particle to another within that portion of the medium which is
already fully agitated; since we have velocity of transmission of phase = s/k, but velocity
of propagation of vibratory motion = ds/dk,” where s denotes the angular frequency
and k the wavenumber of the disturbance in Hamilton’s notation. Subsequent to
this definition, Stokes [2] posed the concept of group velocity as a “Smith’s Prize
examination” question in 1876. Lord Rayleigh [3] then mistakenly attributed the
original definition of the group velocity to Stokes, stating that “when a group of
waves advances into still water, the velocity of the group is less than that of the individ-
ual waves of which it is composed; the waves appear to advance through the group, dying
away as they approach its anterior limit. This phenomenon was, I believe, first explained
by Stokes, who regarded the group as formed by the superposition of two infinite trains of

421
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waves, of equal amplitudes and of nearly equal wavelengths, advancing in the same direc-
tion.” Rayleigh [4] then applied these results to explain the difference between the
phase and group velocities of light with respect to their observability, arguing that
“Unless we can deal with phases, a simple train of waves presents no mark by which its
parts can be identified. The introduction of such a mark necessarily involves a departure
from the original simplicity of a single train, and we have to consider how in accordance
with Fourier’s theorem the new state of things is to be represented. The only case in which
we can expect a simple result is when the mark is of such a character that it leaves a
considerable number of consecutive waves still sensibly of the given harmonic type, though
the wavelength and amplitude may vary within moderate limits at points whose distance
amounts to a very large multiple of λ . . . From this we see that . . . the deviations from the
simple harmonic type travel with the velocity dn/dk and not with the velocity n/k,” where
n denotes the angular frequency and k the wavenumber in Rayleigh’s notation.

The distinction between the signal and group velocities originated in the early
research by Voigt [5,6] and Ehrenfest [7] on elementary dispersive waves, and
by Laue [8], who first considered the problem of dispersive wave propagation in
a region of anomalous dispersion where the absorption is both large and strongly
dependent upon the frequency. Subsequently, the distinction between the front and
signal velocities was considered by Sommerfeld [9,10], who showed that no signal
could travel faster than the vacuum speed of light c and that the signal front pro-
gressed with the velocity c in a dispersive medium, as well as by Brillouin [11,12]
who provided a detailed description of the signal evolution in a Lorentz model
dielectric. In his 1907 paper, Sommerfeld [9] stated that (as translated by Bril-
louin [12]): “It can be proven that the signal velocity is exactly equal to c, if we assume
the observer to be equipped with a detector of infinite sensitivity, and this is true for normal
or anomalous dispersion, for isotropic or anisotropic medium, that may or may not contain
conduction electrons. The signal velocity has absolutely nothing to do with the phase velocity.
There is nothing, in this problem, in the way of Relativity theory.”

The “signal velocity” referred to here by Sommerfeld has since become known
as the front velocity, the signal velocity being described by Brillouin in terms of the
moment of transition from the forerunner evolution to the signal evolution in the
dynamical field evolution due to an initial Heaviside step function modulated sig-
nal. Brillouin’s asymptotic analysis, based upon the then newly developed method
of steepest descent due to Debye [13], provided the first detailed description of
the frequency dispersion of the signal velocity in a single resonance Lorentz model
dielectric. Based upon this seminal analysis, Brillouin concluded that [11,12] “The
signal velocity does not differ from the group velocity, except in the region of anomalous dis-
persion. There the group velocity becomes greater than the velocity in vacuum if the recip-
rocal c/U < 1; it even becomes negative . . . Naturally, the group velocity has a meaning
only so long as it agrees with the signal velocity. The negative parts of the group velocity
have no physical meaning . . . The signal velocity is always less than or at most equal to
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the velocity of light in vacuum.” This research then established the asymptotic theory
of pulse propagation in dispersive, absorptive media. An essential feature of this
approach is its adherence to relativistic causality through careful treatment of the
dispersive properties of both the real and imaginary parts of the complex index of
refraction.

At approximately the same time, Havelock [14,15] completed his research
on wave propagation in dispersive media based upon Kelvin’s stationary phase
method [16]. It appears that Havelock was the first to employ the Taylor series
expansion of the wavenumber (κ in Havelock’s notation) about a given wavenum-
ber value κ0 that the spectrum of the wave group is clustered about, referring to
this approach as the group method. In addition, Havelock [15] stated that “The
range of integration is supposed to be small and the amplitude, phase, and velocity of the
members of the group are assumed to be continuous, slowly varying, functions of κ.” This
research then established the group velocity method for dispersive wave propa-
gation. Since the method of stationary phase [17] requires that the wavenumber
be real valued, this method cannot properly treat causally dispersive, attenuative
media. Furthermore, notice that Havelock’s group velocity method is a significant
departure from Kelvin’s stationary phase method with regard to the wavenumber
value κ0 about which the Taylor series expansion is taken. In Kelvin’s method, κ0 is
the stationary phase point of the wavenumber κ, while in Havelock’s method κ0
describes the wavenumber value about which the wave group spectrum is peaked.
This apparently subtle change in the value of κ0 results in significant consequences
for the accuracy of the resulting group velocity description.

There were then two different approaches to the problem of dispersive pulse
propagation: the asymptotic approach (based upon Debye’s method [12] of steep-
est descent) that provided a proper accounting of causality but was considered
to be mathematically unwieldy without any simple, physical interpretation, and
Havelock’s group velocity approximation (based upon Havelock’s reformulation
of Kelvin’s asymptotic method of stationary phase) that violates causality but pos-
sesses a simple, physically appealing interpretation. It is interesting to note that
both methods are based upon an asymptotic expansion technique but with two
very different approaches: the method of stationary phase that relies on coherent
interference, and the method of steepest descent that relies on attenuation.

The asymptotic approach was revisited in 1930 by Baerwald [18], who recon-
sidered Brillouin’s description of the signal velocity in causally dispersive systems,
and also in 1941 by Stratton [19], who reformulated the problem in terms of the
Laplace transform and derived an alternate contour integral representation of the
propagated signal. Stratton appears to have first referred to the forerunners de-
scribed by Sommerfeld and Brillouin as precursors. The first experimental mea-
surement of the signal velocity was attempted by Shiren [20] in 1962, using pulsed
microwave ultrasonic waves within a narrow absorption band. His experimental re-
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sults were “found to lie within theoretical limits established by calculations of Brillouin and
Baerwald.” However, a more detailed analysis of these experimental results by We-
ber and Trizna [21] indicated that the velocity measured by Shiren was in reality
that for the first precursor and not the signal. Subsequent research by Handelsman
and Bleistein [22] in 1969 provided a uniform asymptotic description of the ar-
rival and initial evolution of the signal front. The first experimental measurements
of the precursor fields originally described by Sommerfeld and Brillouin were then
published by Pleshko and Palócz [23]; it is apparent that they were the first to re-
fer to the first and second precursors as the Sommerfeld and Brillouin precursors,
respectively. Although their experiments were conducted in the microwave domain
on waveguiding structures with dispersion characteristics that are similar to those
described by a single resonance Lorentz model dielectric, the results established
the physical propriety of the asymptotic approach.

The group velocity approximation was also refined and extended during this
same time period, most notably by Eckart [24], who considered the close rela-
tionship between the method of stationary phase and Hamilton-Jacobi ray the-
ory in dispersive but nonabsorptive media. This opened a new avenue of research
into complex rays and dispersion surfaces [25–29] with direct application to pulse
propagation in spatially inhomogeneous, lossy dispersive media, but only when the
material attenuation is nondispersive. The equivalence between the group velocity
and the energy transport velocity in loss-free media was then established [30–32],
thereby providing a physical basis for the group velocity in lossless systems. In
addition, the quasi-monochromatic or slowly-varying envelope approximation was
precisely formulated by Born and Wolf [33] in the context of partial coherence
theory. This completed the mathematical and physical basis for the group veloc-
ity approximation, which was then generalized [34] and extended [35,36] to any
order of dispersion.

The description of the velocity of energy transport through a causally disper-
sive medium, originally considered by Brillouin, was reinvestigated by Schulz-
DuBois [37] in 1969 and finally by Loudon [38], who in 1970 provided a cor-
rect description of the energy velocity in a single-resonance Lorentz model di-
electric. This description showed that the energy velocity and group velocity are
different in the region of anomalous dispersion in causally dispersive dielectrics.
Based upon this critical result, Sherman and Oughstun [39,40] then presented a
complete physical description of dispersive pulse dynamics in a causally dispersive
medium in terms of the energy velocity and attenuation of time-harmonic waves.
This description reduces to the approximate group velocity description in the limit
as the material loss goes to zero. Based upon an extension [41] of Loudon’s en-
ergy velocity to a multiple-resonance Lorentz model dielectric, this energy velocity
description may then be directly extended to this more general physical situation.
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Finally, the signal velocity in a dispersive medium was considered once again
by Trizna and Weber [42] in 1982 in a numerical study, concluding that “one can-
not realistically separate signal from precursor.” A precise definition and asymptotic
description of the signal velocity was then given by Oughstun and Sherman [43]
in 1988 in connection with the modern asymptotic theory of dispersive pulse prop-
agation [43–46]. The physical propriety and related observability of this signal ve-
locity definition was then demonstrated [46,47] through a numerical experiment,
thereby completing the physical interpretation of the asymptotic description.

Recently published research [48,49] has identified the space-time domain
within which the group velocity approximation is valid. The group velocity descrip-
tion of dispersive pulse propagation is based on both the slowly varying envelope
approximation and the Taylor series approximation of the complex wavenumber
about some characteristic angular frequency ωc of the initial pulse at which the
pulse spectrum is peaked. The quasi-monochromatic or slowly varying envelope
approximation, precisely formulated by Born and Wolf in the context of partial
coherence theory, is a hybrid time and frequency domain representation [50] in
which the temporal field behavior is separated into the product of a temporally
slow varying envelope function and an exponential phase term whose angular fre-
quency is centered about ωc. The envelope function is assumed to be slowly vary-
ing on the time scale �tc ∼ 1/ωc, which is equivalent [51] to the assumption that
it’s spectral bandwidth �ω is sufficiently narrow that the inequality �ω/ωc 	 1
is satisfied. The frequency dependence of the wavenumber may then be approxi-
mated by the first few terms of it’s Taylor series expansion about the characteristic
pulse frequency ωc with the assumption [35,36,50] that improved accuracy can
always be obtained through the inclusion of higher-order terms; this assumption
has been proven incorrect [48,49], optimal results being obtained using either the
quadratic or the cubic dispersion approximation of the wavenumber.

Because of the slowly varying envelope approximation, together with the ne-
glect of the frequency dispersion of the material attenuation, the group veloc-
ity approximation is invalid in the ultrashort pulse regime in a causally disper-
sive material or system, it’s accuracy decreasing as the propagation distance �z
increases. This is in contrast with the modern asymptotic description whose ac-
curacy increases in the sense of Poincaré as the propagation distance increases.
There is then a critical propagation distance zc > 0 such that the group velocity
description using either the quadratic or cubic dispersion approximation provides
an accurate description of the pulse dynamics when 0 ≤ �z < zc (the accuracy
increasing as �z → 0), while the modern asymptotic theory provides an accurate
description when �z > zc (the accuracy increasing as �z → ∞). This critical
distance zc depends upon both the dispersive material and the input pulse char-
acteristics, including the pulse shape, temporal width, and characteristic angular
frequency ωc. For example, zc = ∞ for the trivial case of vacuum for all pulse
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shapes, whereas zc ∼ zd for an ultrashort, ultrawideband pulse in a causally disper-
sive dielectric with e–1 penetration depth zd at the characteristic frequency ωc of
the input pulse.

In spite of these results, the group velocity approximation remains central to the
description of ultrashort pulse dynamics in both linear and nonlinear optics with
little regard to it’s domain of validity. This is seemingly supported by the appar-
ent agreement between experimental measurements and the results predicted by
the group velocity approximation. Herein lies the central controversy considered
in this paper. Related to this is the controversy regarding the possibility of superlu-
minal pulse velocities, since the group velocity can assume any value between –∞
and +∞ in a region of anomalous dispersion.

20.2 Integral Representation of the Propagated Pulse

and Causality

The propagated plane wave, pulsed optical field A(z, t) that results from the initial
pulse A(z0, t) = f (t) at the plane z = z0 is given by the Fourier-Laplace integral
representation [46]

A(z, t) =
1

2π

∫
C

f̃ (ω)ei[k̃(ω)�z–ωt]dω (1)

for all �z ≥ 0. Here f̃ (ω) is the temporal angular frequency spectrum of the initial
pulse function f (t) = A(z0, t), C denotes the contour of integration ω = ω′ + ia,
where ω′ = �{ω} ranges from negative to positive infinity, and a is a constant
greater than the abscissa of absolute convergence for f (t). The spectrum Ã(z,ω)
of the optical field A(z, t) satisfies the Helmholtz equation

[∇2 + k̃2(ω)]Ã(z,ω) = 0, (2)

where

k̃(ω) ≡ β(ω) + iα(ω) =
ω

c
n(ω) (3)

is the complex wavenumber of the plane wave field with propagation factor
β(ω) = �{k̃(ω)} and attenuation coefficient α(ω) = �{k̃(ω)}, and where
n(ω) =

√
ε(ω) denotes the complex index of refraction of the dispersive dielec-

tric with relative dielectric permittivity ε(ω) and relative magnetic permeability
µ = 1. Here �{∗} denotes the real part and �{∗} the imaginary part of the quan-
tity ∗ appearing within the brackets. Causality [52,53] requires that the real and
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imaginary parts of the dielectric permittivity ε(ω) = ε′(ω) + iε′′(ω) satisfy the
Kramers-Kronig relations (or Plemelj formulae)

ε′(ω) =
1
π

P
∫ ∞

–∞
ε′′(ζ)
ζ – ω

dζ, ε′′(ω) = –
1
π

P
∫ ∞

–∞
ε′(ζ)
ζ – ω

dζ, (4)

where the symbol P indicates that the principal part of the indicated integration
is to be taken. The frequency dependence of the real part of the dielectric permit-
tivity is then seen to imply the frequency dependence of the imaginary part, and
vice versa. The consequences of this intimate interrelationship have far-reaching
implications in the analysis of linear dispersive pulse propagation phenomena. As
stated by Bohren and Huffman [54], these consequences of the Kramers-Kronig
relations “are almost trivial, but it is disturbing how often they are blithely ignored.”

For the asymptotic theory of dispersive pulse propagation [12,46], the integral
representation given in Eq. (1) is expressed as

A(z, t) =
1

2π

∫
C

f̃ (ω)e(�z/c)φ(ω,θ)dω (5)

with complex phase function

φ(ω,θ) ≡ i
c

�z
[k̃(ω)�z – ωt] = iω[n(ω) – θ] (6)

and nondimensional space-time parameter θ ≡ ct/�z. The fact that this exact inte-
gral representation of the propagated optical wavefield satisfies relativistic causality
is expressed by the following theorem (originally proved by Sommerfeld [9,10]
for a Heaviside unit step function modulated signal in a single resonance Lorentz
model dielectric and later extended [43,46] to an arbitrary plane wave pulse in a
general causally dispersive medium):

If f (t) = 0 for all t < 0 and if �{iω[n(ω) – θ]} → –∞ as |ω| → ∞ with
ω′′ > 0 for all θ < 1, then A(z, t) = 0 for all �z > 0 when θ < 1.

This precise statement of the luminal arrival of the signal front then proves that any
information that may be present in the signal will follow at some later space-time
point with θ > 1.

20.3 Havelock’s Classical Group Velocity Approximation

The group velocity approximation is a hybrid time and frequency domain repre-
sentation [50] in which the temporal pulse behavior is separated into the product
of a slowly varying envelope function and an exponential phase term whose angular
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frequency is centered about some fixed characteristic frequency of the initial pulse.
Consider then the specific form of the initial pulse at the plane z = z0 that is given
by f (t) = u(t) sin(ωct + ψ) with envelope u(t) and constant carrier frequency ωc.
The propagated plane wave pulse is then given by the Fourier-Laplace integral
representation [46]

A(z, t) =
1

2π
�
{

ie–iψ
∫

C
ũ(ω – ωc)ei[k̃(ω)�z–ωt]dω

}
(7)

for all �z ≥ 0, where ψ = 0, π/2 for either a cosine or sine wave carrier, respec-
tively. Here ũ(ω) is the temporal angular frequency spectrum of the initial pulse
envelope function u(t). In the slowly varying envelope approximation, the envelope
function u(t) is assumed to be slowly varying on the time scale �tc ∼ 1/ωc, which is
equivalent [51] to the quasi-monochromatic approximation that the spectral band-
width �ω of ũ(ω) is sufficiently narrow that the inequality �ω/ωc 	 1 is satis-
fied. The complex wavenumber k̃(ω) is then expanded in a Taylor series about the
carrier frequency ωc with the assumption [34–36,50] that this series may be trun-
cated after a few terms with some undefined error. It is typically assumed that the
attenuation coefficient α(ω) = �{k̃(ω)} is sufficiently small that it’s frequency
dispersion is entirely negligible in comparison to that for the propagation factor
β(ω) = �{k̃(ω)}, so that α(ω) ≈ α(ωc); this is entirely compatible with the sta-
tionary phase foundation [14–16] of the group velocity description, which requires
that the wavenumber be real-valued since this frequency-independent attenuation
factor may then be taken outside of the integration. In addition, the propagation
factor β(ω) is typically represented by the quadratic dispersion approximation

β(ω) ≈ β(ωc) + β(1)(ωc)(ω – ωc) +
1
2!

β(2)(ωc)(ω – ωc)2, (8)

where β(j)(ω) ≡ ∂jβ(ω)/∂ωj. The coefficient β(1)(ωc) is the inverse of the group
velocity evaluated at the carrier frequency, while the coefficient β(2)(ωc) describes
the so-called group velocity dispersion [50]. With this substitution, Eq. (7) becomes

A(z, t) ≈ e–α(ωc)�z

[2πβ(2)(ωc)�z]1/2 �
{

ei[β(ωc)�z–ωct–ψ–3π/4]

×
∫ ∞

–∞
u(t′) exp

[
– i

(β′(ωc)�z + t′ – t)2

2β(2)(ωc)�z

]
dt′
}

,

(9)
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and the pulse phase propagates through the dispersive medium at the phase veloc-
ity

vp(ω) ≡ ω

β(ω)
, (10)

while the pulse envelope propagates through the dispersive medium at the group
velocity

vg(ω) ≡ 1
∂β(ω)/∂ω

(11)

evaluated at the input pulse carrier frequency ωc. The propagated pulse shape is
then seen to be proportional to the Fresnel transform of the initial pulse envelope
shape in this approximation. In particular, the propagated pulse structure is seen to
depend upon the value of the time scale parameter [34] TF ≡√

2πβ(2)(ωc)�z,
which relies on the value of the group velocity dispersion. If the initial pulse width
T and propagation distance �z are such that the inequality T � TF is satisfied,
then the scale of variation of u(t) is much larger than TF and the expression (9) for
the propagated pulse may be approximated as

A(z, t) ≈ –u(t – β(1)(ωc)�z)e–α(ωc)�z sin(β(ωc)�z – ωct – ψ). (12)

The pulse is then seen to propagate undistorted in shape with an overall amplitude
decay when T � TF, corresponding to the geometric optics approximation in the
near zone of an aperture. At the opposite extreme when T 	 TF the contribution
from the quadratic phase terms in the exponential of the integrand in Eq. (9) is
negligible in comparison to the linear phase term, and the propagated pulse be-
comes proportional to the Fourier transform of the initial pulse envelope function,
corresponding to the Fraunhofer or far zone in the analogous diffraction prob-
lem. Broader input pulses then propagate undistorted for larger distances than do
shorter input pulses in a given dispersive material.

It has long been argued [35,36,50] that improved accuracy in the group ve-
locity approximation can always be obtained through the inclusion of higher-order
terms in the Taylor series approximation of the propagation factor. In particular,
the cubic dispersion approximation

β(ω) ≈ β(ωc) + β(1)(ωc)(ω – ωc) +
1
2!

β(2)(ωc)(ω – ωc)2

+
1
3!

β(3)(ωc)(ω – ωc)3 (13)
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is also widely used [55] because the cubic term introduces a small degree of asym-
metry into the propagated pulse. However, it has recently been established that
“With the exception of a small neighborhood about some characteristic frequency of the ini-
tial pulse, the inclusion of higher-order terms in the Taylor series approximation of the com-
plex wavenumber in a causally dispersive, attenuative medium beyond the quadratic ap-
proximation is practically meaningless from both the physical and the mathematical points
of view [49].” In particular, optimal results in the global sense are obtained with
either the quadratic dispersion approximation given in Eq. (8) or with the cubic
dispersion approximation given in Eq. (13); neither is really better than the other,
simplicity favoring the quadratic dispersion approximation, while asymmetric pulse
distortion requires that the cubic dispersion approximation be employed.

20.4 The Modern Asymptotic Theory of Dispersive

Optical Pulse Propagation

The form of the contour integral appearing in Eq. (5) is most appropriate for as-
ymptotic analysis as the propagation distance �z becomes large on some suitable
physical scale that is a characteristic of both the dispersive material and the ini-
tial pulse structure. This asymptotic description [9–12,43–46] is obtained from
a mathematically well-founded expansion about several variable saddle points of
the complex phase function φ(ω,θ) defined in Eq. (6) that provide the exponen-
tially dominant contributions to the integral representation (5) of the propagated
field. A complete understanding of these saddle-point dynamics, together with the
manner in which they interact with the initial pulse spectrum, provides a detailed,
accurate description of the entire dynamical evolution of the propagated pulse in
the dispersive, absorptive medium for all �z > zc, the accuracy of this approxima-
tion increasing in the sense of Poincaré [17] as the propagation distance increases
above some critical propagation distance zc > 0.

The set of saddle points of the complex phase function φ(ω,θ) = iω ×
[n(ω) – θ] is determined by the condition that φ(ω,θ) be stationary at a sad-
dle point, in which case φ′(ω,θ) = 0, where the prime denotes differentiation
with respect to ω, so that

n(ω) + ωn′(ω) = θ. (14)

The solutions of this saddle-point equation then give the desired saddle-point
locations in the complex ω-plane as a function of the space-time parameter
θ = ct/�z. The saddle points will then evolve with time at any fixed propagation
distance �z. Because of the general symmetry relations [43,46] n(–ω) = n*(ω*)
and φ(–ω,θ) = φ*(ω*,θ) that are satisfied by a causal medium, if ωj(θ) is sad-
dle point of φ(ω,θ), then so is –ω*

j (θ).
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An appreciation of the physical significance of the saddle points can be ob-
tained from the relation (�z/c)φ(ω,θ) = i[k̃(ω)�z – ωt] for the complex phase
function. Upon differentiating this expression with respect to ω, one obtains
(�z/c)φ′(ω,θ) = i{[∂k̃(ω)/∂ω]�z– t}. Since φ′(ω,θ) = 0 at each saddle point
ωj(θ) of φ, then

�z
t

=
1

(∂k̃(ω)/∂ω)ω=ωj

= ṽg(ωj) (15)

and the complex group velocity is real-valued at the saddle points.
With the saddle-point locations known for θ ≥ 1, the asymptotic analysis then

proceeds by expressing the integral representation given in Eq. (5) in terms of an
integral I(z,θ) with the same integrand but with a new contour of integration P(θ)
to which the original contour C may be deformed [43–46]. By Cauchy’s residue
theorem, the integral representation (5) of A(z, t) and the contour integral I(z,θ)
are related by

A(z, t) = I(z,θ) – �{2πi�(θ)}, (16)

where

�(θ) =
∑

p

Re
ω=ωp

s
{

1
2π

f̃ (ω)exp[(�z/c)φ(ω,θ)]
}

(17)

is the sum of the residues of the poles that were crossed in the deformation from C
to P(θ), and where

I(z,θ) =
1

2π

∫
P(θ)

f̃ (ω)exp[(�z/c)φ(ω,θ)]dω. (18)

For the asymptotic evaluation of the contour integral I(z,θ) as �z → ∞, the
path P(θ) is taken as a union of Olver-type [55] paths [43–46] with respect to
a subset of the set of saddle points of φ(ω,θ) subject to the condition that P(θ)
evolves continuously with θ for all θ ≥ 1. Not all saddle points in this set may
be appropriate in the asymptotic description because the Olver-type paths with
respect to them may not be deformable to the original contour C owing, for exam-
ple, to the presence of the branch cuts of φ(ω,θ). Such saddle points are said to
be inaccessible; otherwise they are said to be accessible. The dominant accessible
saddle point (or points) refers to the saddle point (or points) that has the largest
value of �{φ(ω,θ)} at it, and hence, has the least exponential attenuation asso-
ciated with it. By comparison, Brillouin’s interpretation of this asymptotic method
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required that the contour of integration C be deformed so that it lay along the
entire path of steepest descent through the accessible saddle points of the complex
phase function. Olver’s theorem proved this requirement unnecessary, with impor-
tant consequences regarding the physical significance of whether or not a particular
pole singularity is crossed in deforming the contour C to P(θ).

If ωj(θ) and –ω*
j (θ) are the dominant accessible first-order saddle points at

a particular value of θ, and if they are isolated from each other as well as from all
other saddle points of φ(ω,θ) at that value of θ, then the asymptotic approxima-
tion of I(z,θ) as �z → ∞ is obtained from Olver’s theorem as

I(z,θ) ∼ �
{[

–
c

2π�zφ(2)(ωj,θ)

]1/2

f̃ (ωj)exp[(�z/c)φ(ωj,θ)]

+
[

–
c

2π�zφ(2)(–ω*
j ,θ)

]1/2

f̃ (ω*
j )exp[(�z/c)φ(ω*

j ,θ)]
}

. (19)

The dynamical evolution of the saddle points then provides a nearly complete de-
scription of the dynamical evolution of the transient field behavior associated with
dispersive pulse propagation.

The residue contribution to A(z, t) is nonzero only if f̃ (ω), or ũ(ω – ωc), has
poles. Consider the case of the pulse envelope modulated carrier wave given in
Eq. (7) in which case Eq. (17) becomes

�(θ) =
∑

p

Re
ω=ωp

s
{

1
2π

iexp(–iψ)ũ(ω – ωc)exp[(�z/c)φ(ω,θ)]
}

. (20)

If the envelope function u(t) of the initial field A(z0, t) at the plane z = z0 is
bounded for all time t, then ũ(ω – ωc) can have poles only if u(t) does not tend to
zero too fast as t → ∞. Hence, the implication of a nonzero residue contribution
is that the field A(z, t) oscillates with angular frequency ωc for positive times t at
the plane z = z0 and will tend to do so at larger values of z > z0 for sufficiently
large t. As a result, this contribution to the asymptotic behavior of the propagated
field describes the steady-state behavior of the signal. The arrival of this signal con-
tribution is determined by the dynamics of the dominant saddle point that becomes
exponentially negligible in comparison to the pole contribution. A detailed knowl-
edge of the saddle-point dynamics for a given dispersive material is then seen to
be a critical ingredient for a detailed description of dispersive pulse propagation
in that material, not just for the transient field behavior described by Eq. (19) but
also for the steady-state behavior described in Eq. (20).
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In a multiple resonance Lorentz model [56] dielectric the complex index of
refraction is described by [46]

n(ω) =
(

1 –
N∑

j=0

b2
2j

ω2 – ω2
2j + 2iδ2jω

)1/2

, (21)

where ω2j is the undamped resonance frequency, b2j is the plasma frequency,
and δ2j the phenomenological damping constant for the (2j)th resonance line of
the dielectric material. This causal model [52] provides an accurate description
of both the normal and anomalous dispersion phenomena observed in homoge-
neous, isotropic, locally linear optical materials. The regions of anomalous dis-
persion approximately extend over each frequency domain (ω2j,ω2j+1), where

ω2j+1 ≡
√

ω2
2j + b2

2j. In this case the saddle point Eq. (14) has at least two sets
of saddle points that are symmetrically situated about the imaginary axis. One
pair of saddle points (the distant saddle points [11,12,43,46]) evolve in the high-
frequency region |ω| ≥ ω2N+1 of the complex ω-plane above the uppermost
absorption band of the material, while another pair of saddle points (the near sad-
dle points [11,12,43,46]) evolve in the low-frequency region |ω| ≤ ω0 of the
complex ω-plane below the lowermost absorption band of the dielectric. If the di-
electric material is described by multiple resonance lines, then additional middle
saddle points will appear in the region |ω| < ω2N below the uppermost absorp-
tion of the dielectric. The asymptotic description of the propagated pulse may then
be expressed either in the form

A(z, t) ∼ AS(z, t) + Am(z, t) + AB(z, t) + Ac(z, t) (22)

as �z → ∞, or by an expression that is a superposition of expressions of the form
given in Eq. (22).

Here AS(z, t) denotes the contribution from the distant saddle points with
nonuniform asymptotic approximation given by Eq. (19) for θ > 1 and is re-
ferred to as the first or Sommerfeld precursor. This nonuniform approximation
breaks down at θ = 1, when the distant saddle points are at infinity. The uni-
form asymptotic description [22,45,46] of the Sommerfeld precursor, uniformly
valid in the space-time parameter θ = ct/�z for all θ ≥ 1, must then be used in
place of Eq. (19) for the initial pulse evolution. The instantaneous angular oscil-
lation frequency of the Sommerfeld precursor is approximately given by the real
part of the distant saddle point location [43,46] in the right half of the complex
ω-plane. The Sommerfeld precursor then describes the signal front that arrives
at θ = 1 with infinite oscillation frequency (but zero amplitude for a finite energy
input pulse) and consequently propagates at the speed of light c in vacuum. As
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θ increases away from unity, the amplitude of the Sommerfeld precursor rapidly
increases to a maximum value and then decreases monotonically for all larger θ,
while the instantaneous oscillation frequency monotonically decreases from infinity
and approaches the real frequency value at the upper end of the uppermost absorp-
tion band as θ → ∞. The Sommerfeld precursor is then seen to be a characteristic
of the high frequency response of the dispersive material.

The field component AB(z, t) appearing in Eq. (22) denotes the contribution
from the near saddle points with nonuniform asymptotic approximation given by
Eq. (19) with just the single upper near saddle point contribution over the space-
time domain 1 < θ < θ1 and with both near saddle point contributions over
the space-time domain θ > θ1. The critical value [11,12,43–46] θ1 denotes the
space-time point at which the two first-order near saddle points coalesce into a
single second-order saddle point, at which point the nonuniform expansion breaks
down. This contribution to the total field evolution is referred to as the first or Bril-
louin precursor. The uniform asymptotic description [45,46,57] of the Brillouin
precursor, uniformly valid in the space-time parameter θ = ct/�z for all θ > 1,
must then be used in place of Eq. (19) to describe the pulse evolution about the
space-time point θ = θ1 ≈ θ0, where θ0 = n(0) describes the space-time point at
which the upper near saddle point crosses the origin. The instantaneous oscillation
frequency of the Brillouin precursor is approximately given by the real part of the
near saddle point location [43,46] in the right half of the complex ω-plane. The
amplitude of the Brillouin precursor is found [43–46] to rapidly increase to its
peak value at θ ∼= θ0, where the field attenuation vanishes, and then to decrease
monotonically for larger space-time values, while the instantaneous oscillation fre-
quency monotonically increases from it’s zero value at the space-time point θ = θ1

and approaches the real frequency value ω′
0

∼=
√

ω2
0 – δ2

0 that characterizes the
lower end of the lower absorption band as θ → ∞. The Brillouin precursor is
then seen to be a characteristic of the low frequency response of the dispersive
material. Finally, notice that the peak amplitude point in the Brillouin precursor
experiences zero exponential attenuation, decreasing only algebraically as (�z)–1/2

and travelling at the velocity vB = c/θ0 = c/n(0).
The field component Am(z, t) appearing in Eq. (22) describes the middle pre-

cursor [44] that is due to any of the middle saddle points that may become as-
ymptotically dominant over the distant and near saddle points for a finite space-
time interval that typically occurs between the Sommerfeld and Brillouin precursor
evolutions. The asymptotic description of this middle precursor field is given by
a superposition of terms of the form given in Eq. (19), each term arising from a
separate pair of middle saddle points that are introduced by each additional reso-
nance line beyond that described by the single-resonance Lorentz model. Not all
of these middle saddle points will contribute to the asymptotic field behavior, how-
ever, so that the middle precursor may or may not be present in the dynamical field
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evolution; a necessary condition [44] for the appearance of the middle precursor
is given in terms of the energy velocity in the dispersive dielectric [38,41]. The
middle precursors (if present) are typically a characteristic of the intermediate fre-
quency response of the dispersive medium below the upper absorption band of the
material.

The final contribution appearing in Eq. (22) is the pole contribution Ac(z, t). As
described in connection with Eq. (20), this contribution, when present, describes
the steady-state behavior of the signal. A canonical problem of considerable his-
torical interest [5–12,18–21,42–46] in this regard is provided by the Heaviside
step-function signal f (t) = u(t) sin(ωct) with fixed carrier frequency ωc > 0 and
with envelope function given by the Heaviside unit step-function [u(t) = 0 for
t < 0, and u(t) = 1 for t > 0]. The proper solution of this problem then entails a
careful description of the signal arrival [43–46] and provides a detailed description
of the signal velocity [43,44,46,47] in a Lorentz model dielectric.

20.5 Accuracy of the Group Velocity Description

of Ultrashort Pulse Dynamics

The accuracy of the group velocity approximation of ultrashort pulse disper-
sion is now considered in order to establish the space-time domain over which
this approximate description is valid. A double resonance Lorentz model of a
fluoride-type glass with infrared (ω0 = 1.74× 1014r/s, b0 = 1.22× 1014r/s, δ0 =
4.96 × 1013r/s) and near-ultraviolet (ω2 = 9.145 × 1015r/s, b2 = 6.72 × 1015r/s,
δ2 = 1.434 × 1015r/s) resonance lines is considered with complex index of re-
fraction given by Eq. (21) with N = 2. The angular frequency dispersion of the
real and imaginary parts of the complex wavenumber k̃(ω) = (ω/c)n(ω) for this
double-resonance Lorentz model dielectric is illustrated in Fig. 1. The upper and
lower solid curves in each part of the figure describe the exact frequency depen-
dence of β(ω) ≡ �{k̃(ω)} and α(ω) ≡ �{k̃(ω)}, respectively, while the dashed
curves describe the cubic dispersion approximation when (a) ωc = ωmin =
1.615 × 1015r/s, and (b) ωc = 0.87 ω2 = 8.0 × 1015r/s. The cubic dispersion
approximation is seen to provide a reasonably accurate estimate of the local fre-
quency dispersion of the propagation factor β(ω) about the carrier frequency
within the passband, where the dispersion is normal when ωc = ωmin; but the
accuracy of this approximation is seen to decrease [48,49] as ωc is shifted toward
either absorption band, where the dispersion becomes anomalous. The inclusion of
higher-order terms in the Taylor series approximation of the complex wavenumber
only serves to further decrease its accuracy in a global sense [48,49]. The cubic
dispersion approximation of the attenuation coefficient is not as accurate as that for
the propagation factor, making the necessity of the approximation α(ω) ≈ α(ωc)
used in the group velocity description all the more important.
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Figure 1 Angular frequency dependence of the real (upper solid curves) and imaginary
(lower solid curves) parts of the complex wavenumber for a double-resonance Lorentz
model of a fluoride-type glass with infrared and near-ultraviolet resonance lines. (a) The
dashed curves describe the cubic dispersion approximation about the minimum dispersion
point in the passband between the absorption bands; (b) they describe that approximation
about the upper resonance frequency.
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Because of it’s central importance in ultrashort optical pulse technology, a unit
amplitude Gaussian envelope pulse f (t) = u(t) sin(ωct+π/2) is considered, where

u(t) = exp(–t2/T2), (23)

with initial full pulse width 2T > 0 measured at the exp(–1) amplitude points.
Because the Fourier spectrum of such a Gaussian envelope function is an entire
function of complex ω, it’s asymptotic representation is comprised solely of pre-
cursor fields, so that [58–60]

A(z, t) ∼ AS(z, t) + Am(z, t) + AB(z, t), (24)

as �z → ∞, where Ac(z, t) = 0. The propagated pulse structure at any fixed
propagation distance �z > 0 is numerically determined from the Fourier inte-
gral representation given in Eq. (1), using the fast Fourier transform (FFT) algo-
rithm. A comparison between the propagated pulse structure using the exact dis-
persion relation for the complex wavenumber k̃(ω) = (ω/c)n(ω) with n(ω) given
by Eq. (21) and that obtained using the cubic dispersion approximation given in
Eq. (13) then reveals the accuracy of the group velocity approximation as a func-
tion of both the propagation distance �z and the initial temporal pulse width 2T .
The computed error between these two results then yields the space-time domain
over which the group velocity approximation is valid.

Because the approximate group velocity pulse travels with a velocity that is dif-
ferent from the actual pulse velocity, the first step in this numerical comparison
is to shift the approximate pulse to the position of the actual pulse such that the
peak amplitude points are coincident. Of course, this readily observed difference
in the pulse velocities is an obvious error in the group velocity description. An ex-
ample of this procedure is presented in Fig. 2 for a 2T = 4.12fs Gaussian envelope
pulse with carrier angular frequency ωc = ω2 = 9.145 × 1015r/s at the upper
undamped resonance frequency of the double-resonance Lorentz model dielectric,
where the group velocity is superluminal and negative. Part (a) of the figure il-
lustrates the approximate group velocity and actual pulses at one absorption depth
�z = zd in the medium, where zd = α–1(ωc); the actual pulse is clearly not trav-
eling at a rate given by the classical group velocity vg(ωc) = 1/β′(ωc). Part (b)
of the figure illustrates the actual and approximate pulses when the approximate
group velocity pulse (dashed curve) has been temporally shifted such that it’s peak
amplitude point is coincident with that for the actual pulse (solid curve). The error
between these two pulses is then computed in two different ways. The first error
measure (error 1) is given by the integral of the square of the difference between the
two aligned pulses. This error then measures both shape and energy differences.
The second error measure (error 2) is obtained by first renormalizing both pulses
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Figure 2 Approximate group velocity (dashed curves) and exact (solid curves) pulses at
one absorption depth due to the same input Gaussian envelope pulse with carrier frequency
at the upper resonance frequency of a double-resonance Lorentz model dielectric. (a) The
effect of the velocity difference between the exact and approximate pulses is shown. (b) The
approximate pulse has been shifted in time in order that their peak amplitude points are
coincident.
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by the square root of their respective pulse energies and then taking the integral
of the square of their differences. This error then measures the shape difference
between the two aligned pulses at a given fixed propagation distance.

The numerical results for these two error measures are depicted in Fig. 3 as
a function of the relative propagation distance �z/zd , when the input pulse car-
rier angular frequency ωc is set equal to the angular frequency ωmin at the min-
imum dispersion point in the passband between the two absorption bands of the
double-resonance Lorentz model dielectric. The results are presented for four dif-
ferent values of the input Gaussian envelope pulse width 2T . The results clearly
show that, as expected, the error decreases with increasing initial pulse width at any
fixed value of the propagation distance. The first error measure (error 1) is seen
in Fig. 2(a) and initially increases with increasing propagation distance, reaching
a peak value at approximately one absorption depth (�z/zd ∼ 1), and then de-
creasing to zero as the relative propagation distance �z/zd increases above unity.
This behavior is due to the fact that the group velocity approximate pulse am-
plitude decays exponentially with penetration distance at a faster rate than does
the actual ultrashort pulse so that the observed monotonic decrease in error with
increasing propagation distance �z/zd > 1 primarily describes the slow, nonexpo-
nential amplitude decay with propagation distance of the actual pulse in the lossy
dielectric. This difference between the two pulse amplitudes is eliminated in the
second error measure (error 2), which describes the relative structural error be-
tween the group velocity approximate and exact pulses, as illustrated in Fig. 3(b).
This structural-error measure increases with increasing propagation distance, the
rate of increase decreasing with increasing initial pulse width. For the shortest ini-
tial pulse considered (2T = 7.78fs), the error exceeds 10% when �z/zd ≥ 0.15,
while for the longest initial pulse considered (2T = 77.8fs), the error exceeds 10%
when �z/zd > 1.53.

The error typically increases for both error measures when the input pulse car-
rier frequency is shifted toward either the lower or the upper absorption band of
the double-resonance Lorentz model dielectric. Numerical results for these two
error measures are presented in Fig. 4 as a function of the relative propagation
distance �z/zd when ωc = ω2 = 9.145 × 1015r/s. The results are presented for
four different values of the input Gaussian envelope pulse width 2T , each value
corresponding to the same number of oscillations between the exp(–1) amplitude
points as presented in Fig. 3 at the minimum dispersion point (Nosc = 1, 3, 5, 10).
The error again decreases with increasing initial pulse width at any fixed value
of the propagation distance. The first error measure (error 1) is seen in Fig. 3(a)
of the figure to initially increase with increasing propagation distance, reaching a
peak value at approximately one absorption depth for the two largest initial pulse
width cases (2T = 6.87fs and 2T = 13.7fs), and then decreasing to zero as the rel-
ative propagation distance increases above unity. In the three-oscillation pulse case
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Figure 3 Error resulting form the group velocity description of the propagated Gaussian
envelope pulse with a cubic dispersion approximation of the propagation factor β(ω)
in a double-resonance Lorentz model dielectric as function of the relative penetration
depth �z/zd when the input pulse carrier frequency ωc is equal to the angular frequency
ωmin at the minimum dispersion point in the passband between the two absorption bands
for different values of the input pulse width 2T .

(2T = 4.12fs) this peak in the first error measure occurs at �z/zd ≈ 0.4, while
for the single-oscillation pulse case (27 = 1.37fs) this peak in the first error mea-
sure occurs at �z/zd ≈ 0.2, with a secondary peak appearing at �z/zd ≈ 1. The
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Figure 4 Error resulting from the group velocity description of the propagated Gaussian
envelope pulse with a cubic dispersion approximation of the propagation factor β(ω) in a
double-resonance Lorentz model dielectric as a function of the relative penetration depth
�z/zd when the input pulse carrier frequency ωc is equal to the upper resonance frequency
ω2 of the dielectric for different values of the input pulse width 2T .

structural error measure (error 2) is seen in Fig. 4(b) to increase with increasing
propagation distance for both the five- and ten-oscillation input pulse cases, while it
exhibits a more complicated behavior for the one- and three-oscillation input pulse
cases. For the shortest initial pulse considered here (2T = 1.37fs) the second er-
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ror measure exceeds 10% when �z/zd ≥ 0.0052; while for the longest initial pulse
considered (2T = 13.7fs), this error measure exceeds 10% when �z/zd ≥ 0.99.

20.6 The Question of Superluminal Pulse Velocities

A number of velocity measures have been introduced for the purpose of describing
the rate at which some particular feature of a pulse travels through a dispersive
material. The most important of these are the phase [3], group [1–4,30–32], en-
ergy [38,41], signal [5,7–12,18,43–47], and centroid [61–65] velocities. Each of
these velocity measures in free space equals the velocity of light c in vacuum, but
they are in general different in a causally dispersive material such as that described
by the Lorentz model.

The phase velocity vp(ω) ≡ ω/β(ω) describes the rate at which the cophasal
surfaces propagate through the dispersive medium [3] [cf. Eqs. (9) and (10)].
Since the phase of a spatially coherent optical field can only be measured indi-
rectly [66], this velocity measure does not have any separate, measurable physical
meaning in spite of the fact that it plays a central role in the mathematical descrip-
tion of pulse dispersion, as described by Eq. (1). In particular, the phase velocity of
a pulse is superluminal [i.e., vp(ωc) > c] when the input pulse carrier frequency
ωc is above the uppermost absorption band of a Lorentz model dielectric, as illus-
trated in Fig. 5(a) for a single-resonance Lorentz model dielectric when ωc > ω1.
For an ultrashort pulse with above-resonance carrier frequency whose temporal en-
ergy centroid is moving subluminally, the phase velocity is then seen to describe the
motion of a space-time point where there is negligible pulse energy.

The group velocity vg(ω) ≡ (∂β(ω)/∂ω)–1 describes the rate at which the
envelope of a group of waves travels through the dispersive medium [1–4] [cf.
Eqs. (9) and (11)]. As described by Rayleigh [3], a group of waves is defined as
moving beats following each other in a regular pattern as, for example, that ob-
tained from the coherent superposition of two monochromatic waves with slightly
different amplitudes and frequencies. Although the group velocity does indeed
describe the beat velocity of such an infinite wave group, it’s extension to the de-
scription of the velocity of an ultrashort pulse in a causally dispersive medium is
invalid. This is readily evident in Fig. 2(a), where the group velocity approximate
pulse is seen to be moving at a faster rate than is the actual pulse. This example
illustrates the extreme dispersion case when ωc = ω2. The group velocity value
vg(ωc) is then seen to be a poor measure of the actual pulse velocity when the ma-
terial loss is not negligible, although it can describe the initial pulse evolution when
the material loss is near the minimum dispersion point, where the material loss is
minimal. However, even in that minimum dispersion situation, the pulse velocity
will diverge from the group velocity as the pulse evolution progresses deeper into
the dispersive material.
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Figure 5 Frequency dependence of (a) the relative phase velocity (dashed curve), group
velocity (dash-dot curve), and energy velocity (solid curve); and (b) the relative energy ve-
locity (solid curve) and signal velocity (open circles) in a single-resonance Lorentz model
dielectric.

The energy transport velocity vE(ωc) ≡ 〈S · Ẑ〉/〈U〉 for a monochromatic
plane wave field with angular frequency ωc traveling in the positive z-direction, de-
fined [38] as the ratio of the time-average Poynting vector 〈S〉 = (c/4π)〈E × H〉
= (c/8π)nr(ωc)|E|2 to the total time-average electromagnetic energy density
〈U〉 = 〈Uem〉 + 〈Umed〉 in the coupled medium-field system, describes the time-
average rate at which electromagnetic energy is transported through the dispersive
medium. For a multiple resonance Lorentz model dielectric, the energy transport
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velocity is given by [41]

vE(ωc) =
c

nr(ωc) + 1
nr(ωc)

∑
j

b2
j ωc

(ω2
c –ω2

j )2+4δ2
j ω

2
c

. (25)

Notice that this expression yields relativistically causal results, where
0 < vE(ωc) ≤ c for all ωc ∈ [0,∞]. In regions of normal dispersion, the energy
velocity reduces to the corresponding expression for the group velocity provided
that the material loss at the carrier angular frequency ωc is not too large, while in
regions of anomalous dispersion the two results can be significantly different, par-
ticularly when the group velocity assumes either superluminal or negative values.

The signal velocity [5–12] describes the rate at which the signal arrival due
to the pole contribution Ac(z, t) first appears in the asymptotic description given in
Eq. (22). This contribution, when present, describes the steady-state behavior of
the signal. The modern asymptotic theory [43–46] has shown that the energy ve-
locity for a monochromatic wave forms an upper envelope for the signal velocity in
a Lorentz model dielectric, as illustrated in Fig. 5(b). Based upon this connection
between the energy velocity of a monochromatic signal and the signal velocity of a
Heaviside step-function signal, a new physical description [39,40,46] of dispersive
pulse dynamics in Lorentz model dielectrics has been developed in terms of the en-
ergy transport velocity and attenuation of monochromatic waves in the dispersive,
attenuative material. This physical description reduces to the group velocity de-
scription in the limit of zero material loss (i.e., as δj → 0 for each resonance line).
Most important, this energy velocity description provides an accurately detailed
description of the precursor fields in dispersive pulse dynamics when the pulse
dispersion is in the mature dispersion regime (typically when �z > zd).

A comparison of the relative phase, group, and energy velocities is given
in Fig. 6(a) for the double-resonance Lorentz model dielectric whose complex
wavenumber dependence on angular frequency is illustrated in Fig. 1, and in
Fig. 6(b) when each of the phenomenological damping constants for the double-
resonance Lorentz model dielectric considered in Fig. 1 has each been reduced by
a factor of 10 (i.e., when δj → δj/10 for j = 0, 2). Notice that the group velocity
becomes negative in the upper absorption band, but not in the lower absorption
band in part (a) of the figure; however, when the damping constants are reduced,
as in part (b) of the figure, the group velocity then becomes negative in both ab-
sorption bands. Notice also that the group velocity becomes nearly identical with
the energy velocity throughout the normal dispersion regions when the damping
constants are decreased, as in Fig. 6(b).

For the numerical Gaussian pulse example illustrated in Fig. 2, the peak am-
plitude point of the actual pulse is moving with the average velocity vpeak

∼= 0.91c
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Figure 6 Frequency dependence of the relative phase velocity (dashed curves), group
velocity (dash-dot curves), and energy velocity (solid curves) for (a) the double-resonance
Lorentz model dielectric considered in Fig. 1; and (b) the same double-resonance Lorentz
model dielectric when each of the phenomenological damping constants have been re-
duced by a factor of 10.

and the peak amplitude point of the group velocity approximate pulse is mov-
ing with the average velocity vapp

peak
∼= –0.30c, while the phase velocity is given by

vp(ωc) ∼= 0.82c, the group velocity is given by vg(ωc) ∼= –0.41c, and the energy
velocity is given by vE(ωc) ∼= 0.18c at the input pulse carrier angular frequency
ωc = ω2 = 9.145 × 1015r/s. The peak amplitude values reported here are “time-
of-flight” values that result from numerical measurements of the initial and final
pulse positions. This average peak amplitude velocity measure changes as the prop-
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agation distance into the dispersive dielectric increases, as does the instantaneous
peak amplitude velocity. The instantaneous peak amplitude velocity of an ultrashort
Gaussian pulse has been shown [59,60] to evolve with increasing propagation dis-
tance along the group velocity curve toward the energy velocity curve as the in-
stantaneous oscillation frequency at the peak amplitude point shifts away from the
region of anomalous dispersion and into the normal dispersion region either above
or below that absorption band. It is then not surprising that the numerical veloc-
ity values given above are all significantly different as each describes a different
feature of the pulse that may only be valid either in the limit of vanishingly small
propagation distance (the group velocity), or else in the large propagation distance
asymptotic limit (the energy velocity).

It is clear that a more physically meaningful pulse velocity measure needs to
be considered in order to accurately describe the complicated pulse evolution that
occurs in ultrashort dispersive pulse dynamics. One possible measure is given by
the pulse centrovelocity [61]

vCE ≡
∣∣∣∣∇
(∫ ∞

–∞
tE2(r, t) dt

/∫ ∞

–∞
E2(r, t) dt

)∣∣∣∣
–1

, (26)

which describes the temporal center of gravity of the pulse intensity. A more appro-
priate velocity measure would track the temporal centroid of the Poynting vector of
the pulse. This pulse centroid velocity of the Poynting vector was first introduced
by Lisak [62] in 1976. Recent descriptions [63–65] of its properties have estab-
lished its efficacy in describing the evolution of the pulse velocity with propagation
distance in a Lorentz model dielectric. The instantaneous centroid velocity of the
pulse Poynting vector is defined as [65]

vCI = lim
�z→0

(�z/�〈t〉) (27)

for a plane wave pulse propagating in the positive z-direction through the disper-
sive medium, where �z = z2 – z1, �〈t〉 = 〈t2〉 – 〈t1〉 with

〈tj〉 ≡
∫ ∞

–∞
tSz(zj, t)dt

/∫ ∞

–∞
Sz(zj, t)dt, (28)

where Sz = ẑ · S denotes the z-component of the Poynting vector.
The evolution of the instantaneous centroid velocity of the pulse Poynting vec-

tor with the relative propagation distance �z/zd for Gaussian pulse propagation
in a double-resonance Lorentz model dielectric is illustrated in Fig. 7 for several
values of the input pulse width. In part (a) of the figure, the input pulse carrier
frequency is set at the minimum dispersion point ωmin in the passband between
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Figure 7 Evolution of the relative instantaneous centroid velocity of the pulse Poynt-
ing vector with relative propagation distance for Gaussian pulse propagation in the dou-
ble-resonance Lorentz model dielectric whose frequency dispersion is presented in Fig. 1.
In part (a) the input pulse carrier frequency is at the minimum dispersion point in the pass-
band between the two absorption bands, and in part (b) the input pulse carrier frequency
is at the upper resonance frequency.

the two absorption bands, where the material dispersion is normal. For each in-
put pulse width case considered in Fig. 7(a), the instantaneous centrovelocity is
approximately given by the classical group velocity vg(ωc) ∼= 0.7920c evaluated at
the input carrier frequency ωc in the limit of vanishingly small propagation dis-



448 Several Controversial Topics in Contemporary Optics

tance. This classical group velocity limit is actually obtained at a sufficiently small
propagation distance in the limit as the initial pulse width increases and the ini-
tial pulse spectrum narrows about the carrier frequency. In the opposite limit as
�z/zd → ∞ the centroid velocity is found to approach the velocity vB = c/n(0)
at which the peak amplitude point in the Brillouin precursor travels through the
dispersive material. The transition of the pulse centroid velocity between these two
limits is marked by a narrow dip in velocity as the pulse evolves from the ap-
proximate group velocity behavior at small propagation distances to it’s asymptotic
behavior for large propagation distances. The minimum point in this dip occurs
at a propagation distance whose value increases with increasing initial pulse width,
while the minimum value decreases with increasing initial pulse width. At the lead-
ing edge of each dip when the centrovelocity rapidly decreases, the pulse begins to
separate into a pair of middle and Brillouin precursors and the temporal pulse
centroid is found to occur at a space-time point between these two pulse compo-
nents where the pulse energy is minimal. Finally, notice that the centrovelocity for
a Gaussian pulse is subluminal and nonnegative (i.e., 0 ≤ vCI < c) for all propa-
gation distances at this input carrier frequency.

In Fig. 7(b) the input pulse carrier frequency is set equal to the upper reso-
nance frequency ω2 of the double-resonance Lorentz model dielectric where the
dispersion is anomalous. The classical group velocity limit vg(ωc) ∼= –0.4076c is
again approached at a sufficiently small propagation distance in the limit as the
initial pulse width increases and the initial pulse spectrum narrows about the car-
rier frequency ωc, but at a much slower rate than that obtained at the minimum
dispersion point. However, notice that if the initial pulse width is sufficiently small
(as it is for the 1.37fs pulse case), then the initial pulse spectrum is extremely ul-
trawideband such that the classical group velocity limit is not obtained as �z → 0
and the centrovelocity remains positive for all propagation distances �z ≥ 0. In the
opposite limit as �z/zd → ∞ the centroid velocity is again found to approach the
velocity vB = c/n(0) at which the peak amplitude point in the Brillouin precursor
travels through the dispersive material. For a sufficiently long initial pulse width,
the transition of the ultrawideband pulse centroid velocity between these two lim-
its is marked by a rapid decrease in centrovelocity to –∞ and then from +∞ to
subluminal values before approaching the asymptotic limit vB = c/n(0) set by the
peak amplitude point of the Brillouin precursor. The discontinuous jump in the
centrovelocity from –∞ to +∞ is found to occur at a relative propagation dis-
tance whose value increases with increasing pulse width, provided that the initial
pulse spectrum is ultrawideband.

In spite of the fact that the instantaneous centrovelocity of the pulse Poynting
vector can take on both negative and superluminal values for sufficiently small rela-
tive propagation distances, the pulse itself is found to only undergo a slight change
in shape. There is no superluminal movement of the pulse when the instantaneous
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pulse centrovelocity is superluminal, nor is there any retrogression in position when
the pulse centrovelocity is negative. Sommerfeld’s theorem firmly establishes that
electromagnetic field energy cannot move forward of any space-time point in the
pulse at a superluminal rate. Finally, notice that this seemingly nonphysical behav-
ior only occurs in the immature dispersion regime (0 ≤ �z < zc), where the group
velocity approximation applies in the limit as �z → 0.

20.7 Conclusions

The analysis and numerical results presented in this paper have established the
following results:

(1) The group velocity approximation is valid only in the immature dispersion
regime 0 ≤ �z < zc, it’s accuracy increasing as �z → 0. The asymptotic
description is valid in the mature dispersion regime �z > zc, it’s accuracy
increasing in the sense of Poincaré [17] as �z → ∞. The critical dis-
tance zc depends upon the input pulse type and initial pulse length, as well
as upon the input pulse carrier frequency for a given dispersive material.

(2) The instantaneous centroid velocity of the pulse Poynting vector is a con-
venient, albeit sometimes misleading, measure of the pulse evolution in
a dispersive medium for input Gaussian envelope pulses. Although this
velocity measure can take on both negative and superluminal values for
relative propagation distances in the immature dispersion regime, these
nonphysical values mark the initial transition into the mature dispersion
regime where the asymptotic description applies.

(3) Superluminal values of the instantaneous centroid velocity of the pulse
Poynting vector are ephemeral and do not describe any real, observable
motion of the pulse.

(4) Negative values of the instantaneous centroid velocity of the pulse Poynt-
ing vector are also short-lived and do not describe any retrogression in
position of the pulse. In each case, the energy transport velocity for each
monochromatic component present in the initial pulse spectrum travels
with the relativistically causal velocity given in Eq. (25) so that, taken
together with the attenuation, the propagated pulse may always be con-
structed [39,40,46] in a causal manner from the initial Gaussian pulse.
There can then be no superluminal motion of the pulse, nor can there be
any pulse retrogression.
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CHAPTER 21

TOTAL INTERNAL REFLECTION

TOMOGRAPHY FOR

THREE-DIMENSIONAL

SUBWAVELENGTH IMAGING

David G. Fischer and P. Scott Carney

21.1 Introduction

Near-field imaging has gained a great deal of exposure in recent years for its abil-
ity to resolve subwavelength structure in optically thin media [1–9]. It has many
variants, including total internal reflection microscopy (TIRM) [5–7], photon
scanning tunneling microscopy (PSTM) [9,10], and near-field scanning optical
microscopy (NSOM) [1–4], but common to all is the use of evanescent waves for
illumination and/or detection. In many instances, image interpretation is difficult,
owing to the complex interaction between the incident field and the sample, as well
as between the scattered field and the near-field probe.

These difficulties are exacerbated when near-field techniques are applied
to relatively thick samples. In addition to the problem of reconstructing a
three-dimensional function of position (the dielectric susceptibility) from two-
dimensional data sets (measurements of the scattered field in various planes), a
thick object may exhibit strong scattering, with the consequence that the scattered
field is a nonlinear function of the susceptibility. Even when the scattering is weak,
the detected field may not be simply related to the subwavelength structure of the
object, as it is, for example, in the case of diffraction from a 2D object [11,12].

In this chapter, we will discuss a new form of near-field imaging that makes use
of TIRM measurements to produce computed reconstructions of the susceptibil-
ity of the sample. This method provides tomographic views and subwavelength
resolution. Since the system is free from the moving (and often ill-characterized)
probe present in PSTM and NSOM, the analysis of the problem is greatly simpli-
fied. Indeed the experiment is well modeled as a half-space problem and an exact
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solution for the Green’s function (absent the sample) is well known. The linearized
inverse scattering problem may then be solved in a computationally efficient and
stable manner. In Sect. 21.2 we review the fundamentals of diffraction tomography
and observe the emergence of the classical resolution limits. In Sect. 21.3 we exam-
ine the properties of near-field evanescent waves and the role they play in achieving
super-resolution in a variety of near-field methods. In Sect. 21.4 we describe the
basic TIRM measurement scheme and its extension to total internal reflection to-
mography (TIRT). In Sect. 21.5 we address the structure of the TIRT data and
the development of fast, stable reconstruction algorithms, followed by numerical
simulations in Sect. 21.6. Finally, in Sect. 21.7 we describe the instrument cur-
rently under construction at NASA to implement this modality.

21.2 Conventional Imaging

Conventional optical imaging systems are limited by diffraction to a resolution
of approximately half the illuminating wavelength [13,14]. This so-called Abbe-
Rayleigh resolution limit [15,16] is not a fundamental one, but is a consequence of
the measurement scheme. In particular, the Abbe-Rayleigh limit arises only when
the evanescent field in the near zone of the scatterer is inaccessible. While this
was the case for more than a century after the theoretical predictions of Abbe and
Rayleigh, the so-called near field can now be practically measured, as we will see
later. Let us first review the convertional case.

Consider a scattering experiment in which a monochromatic field is incident
on a localized dielectric medium with complex susceptibility η(r) (see Fig. 1).

Figure 1 Illustrating the scattering geometry.

For simplicity, we ignore the effects of polarization and consider the case of a
scalar field U(r) that obeys the reduced wave equation

∇2U(r) + k2U(r) = –4πk2η(r)U(r), (1)
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where k is the free-space wavenumber. Following standard procedures, we find that
U(r) satisfies the integral equation [13]

U(r) = U(i)(r) + k2
∫

d3r′G(r, r′)U(r′)η(r′), (2)

where the outgoing Green’s function G(r, r′) is given by

G(r, r′) =
exp(ik|r – r′|)

|r – r′| , (3)

and U(i)(r) is the incident field. We restrict ourselves to the weak-scattering ap-
proximation (also known as the first Born approximation [13]), which is partic-
ularly suited to the study of subwavelength structures. Accordingly, the scattered
field U(s)(r) = U(r) – U(i)(r) may be calculated perturbatively to lowest order in
η with the result

U(s)(r) = k2
∫

d3r′G(r, r′)U(i)(r′)η(r′). (4)

We take the incident field to be a unit amplitude plane wave traveling in the di-
rection of the unit vector s0, i.e., U(i)(r) = exp(iks0 · r). Utilizing the asymptotic
form of the outgoing Green’s function given by

exp(ik|r – r′|)
|r – r′| ∼ exp(ikr)

r
exp(–iks · r′), (5)

as kr → ∞ with the unit vector s kept fixed, we find that the scattered field in the
far zone has the form

U(s)(rs) ∼ exp(ikr)
r

a(s, s0), (6)

where the scattering amplitude is given by the expression [13]

a(s, s0) = k2(2π)3η̃
[
k(s – s0)

]
, (7)

and

η̃(K) =
1

(2π)3

∫
d3r η(r)exp(–iK · r) (8)
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Figure 2 Illustrating the Ewald sphere of reflection and the Ewald-limiting sphere.

is the three-dimensional spatial Fourier transform of the dielectric susceptibility.
This is the fundamental result of diffraction tomography and was first derived by
Prof. Wolf in 1969 [14].

Equation (7) illustrates that, for a weakly scattering medium, there is a one-
to-one mapping between the scattering amplitude for real s, s0 and the low spatial
frequency components of the dielectric susceptibility. Specifically, for a fixed direc-
tion of incidence s0, the scattering amplitude is mapped onto the surface of a sphere
of radius k centered at – k s0 in the 3D Fourier space of the dielectric susceptibility
(Fig. 2).

As s0 is varied, those surfaces fill a sphere of radius 2k centered at the origin
(known as the Ewald limiting sphere [13,17]). Consequently, one may obtain a
low-pass filtered estimate of the susceptibility, namely

[η(r)]LP =
∫

|K|≤2k
d3Kη̃(K)exp(iK · r). (9)

Furthermore, this estimate is unique since, due to the analyticity of η̃(K),* the
low-spatial frequency components of the dielectric susceptibility can, in principle,
be analytically continued to the exterior of the Ewald limiting sphere [18]. In
practice, however, techniques based on analytic continuation, such as band-limited
extrapolation, are known to be unstable in the presence of measurement noise
[19–21].
* It follows from the 3D version of the Plancherel-Polya theorem that, since the domain of local-

ization of the medium is finite, the 3D spatial Fourier transform of the dielectric susceptibility is
the boundary value on the real axes Kx, Ky, Kz of an entire analytic function of three complex
variables.
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21.3 Evanescent Wave Illumination

We have seen that the low-spatial frequency components of the susceptibility may
be determined by illuminating a sample with homogeneous waves and measuring
the scattered far field. To determine some subset of the Fourier components that
lie outside the Ewald limiting sphere and consequently improve resolution, the
illuminating field (or the measured field) must contain non-negligible evanescent
field components.

Consider a general plane-wave form for the incident field:

U(i)(r) = exp
[
ik(s0⊥ · ρ) + s0zz

]
, (10)

where r = (ρ, z), s0 = (s0⊥, s0z) and

s0z =



√

1 – s20⊥, when |s0⊥| ≤ 1

i
√

s20⊥ – 1, when |s0⊥| > 1.
(11)

For |s0⊥| ≤ 1, the incident field is a homogeneous plane wave propagating in the
direction of the unit vector s0, as seen in the previous section. It has a transverse
scale length

λ0⊥ =
2π
k0⊥

=
λ

|s0⊥| (12)

that is larger than the wavelength (see Fig. 3).
For |s0⊥| > 1, the incident field is an evanescent plane wave with a transverse

scale length that is smaller than the wavelength (i.e., λ0⊥ < λ). Consequently,
evanescent incident fields can probe and encode structure on spatial scales smaller

Figure 3 Illustrating the transverse scale length of homogeneous and evanescent waves.
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than the illuminating wavelength. Unfortunately, evanescent waves decay exponen-
tially from their point of origin with decay rate

γ =
2π
λ

√
|s0⊥|2 – 1, (13)

so that a two-fold increase in probe scale length (|s0⊥| = 2), for example, requires
that the source of evanescent waves be located within a distance of λ/10 of the
scattering structure. This is the reason the resolution of a conventional imaging
system is λ/2; the source and detector are many wavelengths from the scattering
medium, so that effectively, only homogeneous waves are present.

Evanescent waves for illumination may be generated by total internal reflection
or by diffraction at a subwavelength aperture. The near-field scanning optical mi-
croscope (NSOM) is an instrument that uses the second mode of generation to
locally confine a probe field at the surface of a sample (see Fig. 4) [1–4].

Figure 4 Illustrating the principle of NSOM. Zs represents the fiber-sample separation.

Scanning the aperture across the sample and recording either the throughput
or the reflected field as a function of probe position produces an image with sub-
wavelength resolution. This technique was first proposed by Synge in 1928 [22]
and experimentally realized through the use of microwaves by Ash and Nicholls in
1972 [23]. Today, a tapered optical fiber with subwavelength tip cross section w
is typically used in place of the aperture for illumination (Fig. 4). When the fiber
tip is very close to the surface of the sample, the resolution is on the order of the
tip size. As the fiber is removed from the sample, the localization of the incident
light (and the corresponding resolution) is reduced due to the loss (decay) of the
evanescent waves. Figure 5 illustrates some of the first experimental images taken
with an NSOM [1]. One can clearly see the loss of resolution as the fiber tip is
incrementally distanced from the sample.
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Figure 5 AT&T NSOM images from Ref. [1]. The fiber-sample separations are
(a) near contact, (b) 5 nm, (c) 10 nm, (d) 25 nm, (e) 100 nm, and (f) 400 nm. (Reprinted
with permission from Betzig and Trautman, “Near-field Optics—Microscopy, Spec-
troscopy, and Surface Modification beyond the diffraction limit,” 257, 189–195 (1992).
Copyright AAAS, 1992.)

NSOM images have striking subwavelength detail, but their interpretation is
often problematic, especially for thicker samples. This is due to the fact that an
NSOM image is a measure of the field outside the sample, and the fundamental re-
lationship (or mapping) between the field and the optical properties of the medium
is usually not taken into account. Rather, the mapping is modeled effectively as a
(one-view) projection or shadowgram. Furthermore, an NSOM image is typically
defocused since the probe field contains a continuous distribution of both homo-
geneous and evanescent waves, and, consequently, its exact composition (and the
resulting image) is a function of the fiber-sample separation.

This is illustrated in Fig. 6. We consider a 3D object composed of two stacked
planes, one at z = 0.005λ and another at z = 0.405λ (z = 0 being the location of
the evanescent wave source). Figures 6(a) and 6(b) illustrate the object structure
in the two planes, respectively, and Figs. 6(c) and 6(d) illustrate their individual
far zone images.

These are qualitatively similar to the images in Figs. 5(a) and 5(f) obtained
from the AT&T NSOM. It is clear that the object structure contained in the
plane z = 0.405λ cannot be resolved from far zone scattered field measurements.
Furthermore, for the composite object, the image (i.e., scattered field) of the un-
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Figure 6 Illustrating NSOM imaging of a thick object.

resolved structure in the plane z = 0.405λ will obscure and degrade the image of
the structure in the plane z = 0.005λ.

It is clear from Fig. 6 that the field scattered from the deeper plane is simply
defocused. This phenomenon is not particular to the near field, but since a phys-
ical lens for the near field is not currently available (due to the irretrievable loss
of evanescent waves), a post-processing solution must be sought. That this need
seemed to be so long overlooked might be explained by the fact that the data ob-
tained at closest approach so much resembles an actual image. As we shall see in
the next section, there exist modalities for which processing of the collected data is
absolutely required.

21.4 Three-Dimensional Near-Field Imaging

Total internal reflection microscopy also involves illuminating a sample with
evanescent waves [5–7]. In TIRM, an evanescent wave generated by total in-
ternal reflection illuminates an object, and the scattered (or radiated) light is col-
lected by a standard microscope objective. Due to the exponential decay of the
incident evanescent wave, the interrogation (or excitation) volume is limited in
depth to a thickness of zp = 1/γ, with more evanescent fields yielding narrower
excitation regions [see Eq. (13)]. Consequently, TIRM provides a far-field (dif-
fraction limited) intensity image of a subwavelength region near the exit face of the
prism. While it does not provide subwavelength imaging, it does provide subwave-
length localization in depth. As such it is extremely useful for surface inspection.
TIRM can be taken a step further if images are recorded for a series of distinct
evanescent incident fields. In this case, each image is the result of a different (and
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Figure 7 Illustrating the TIRT geometry. θc represents the critical angle.

unique) exponential weighting of the susceptibility, and the composite image stack
can be inverted (possibly) to provide subwavelength resolution in depth (i.e., the
z-dimension). In either the standard or extended TIRM case, the transverse resolu-
tion is limited to λ/2 since the excitation volume is not constrained in the transverse
dimension and only the amplitude of the scattered field is measured in the far zone.

Total internal reflection tomography [24–27] is a coherent extension of TIRM
in which the complex scattered field (both amplitude and phase) in the far zone is
recorded for a diverse set of evanescent incident fields. The scattered field data is
subsequently synthesized (or inverted) to yield an estimate of the 3D object struc-
ture. Central to the inversion is the physical connection between the structure of
the susceptibility and the scattered field. This connection is most easily seen in the
Fourier domain. Consider an evanescent plane wave with complex wave vector ks0,
generated by total internal reflection, which illuminates a weakly scattering object
that is confined to the region 0 ≤ z ≤ d (see Fig. 7).

The amplitude of the evanescent wave at the exit face of the prism
(z = –�z) is taken to be unity. It can be shown that the scattering amplitude,
to first order, is given by [24]

a(s, s0) = k2(2π)2exp
(
–k|s0z|�z

) ∫
dKzη̃

[
k(s⊥ – s⊥0), Kz

]
Ih
(
Kz; sz, |s0z|

)
,

(14)
where

Ih(Kz; sz, |s0z|) =
exp{[k|s0z| + i(ksz – Kz)]d}

k|s0z| + i(ksz – Kz)
. (15)
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There is no longer a one-to-one correspondence between the scattering amplitude
and the 3D Fourier transform of the dielectric susceptibility, as there was in the
case of conventional imaging [cf., Eq. (7)]. Specifically, the scattering amplitude
a(s, s0) is now proportional to the weighted projection (i.e., the generalized Radon
transform) along the Kz axis of all of those Fourier components of the susceptibility
that have K⊥ = k(s⊥ – s0⊥). The weighting function Ih, which is independent of
object thickness, determines the effective number of longitudinal Fourier compo-
nents that contribute to the scattering amplitude. Its normalized modulus, shown
in Fig. 8, is peaked at Kz = ksz and has a nominal width of 2

√
3k|s0z|.

As a result, the scattered field in the direction s carries information about a
single high-frequency transverse Fourier component and many (both low- and
high-frequency) longitudinal Fourier components, with the number of longitudi-
nal Fourier components that effectively contribute to the scattered field increasing
with the degree of evanescence |s0⊥| =

√
1 + |s0z|2 of the incident field.

By contrast, for a 2D object with susceptibility η(r) = β(ρ)δ(z), the scattering
amplitude takes the form

a(s, s0) = k2(2π)3exp
(
–k|s0z|�z

)
β̃
[
k(s⊥ – s0⊥)

]
, (16)

where

β̃(ξ) =
1

(2π)2

∫
z=0

d2ρβ(ρ)exp(–iξ · ρ), (17)

is the 2D Fourier transform of β(ρ). In this case, there is a one-to-one mapping be-
tween the high-frequency 2D Fourier components of the object and the scattering
amplitude. This one-to-one mapping explains the success of NSOM in resolving
subwavelength detail in 2D samples.

Figure 8 The modulus of the normalized weighting function, plotted for |s0z| = 1.5
and sz = 1.
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21.5 Image Reconstruction

As we have seen, for evanescent wave illumination and far-field detection, there
is a many-to-one mapping between the 3D spatial Fourier components of the di-
electric susceptibility and the scattered field. This leads to an inverse problem
that is inherently ill-posed (or ill-conditioned in the discrete case) and generally
underdetermined [21]. In TIRT, there are two general reconstruction strate-
gies that can be employed for 3D structure determination: Fourier domain sam-
pling and singular value decomposition. In either case, the inversion procedure
must involve some type of regularization to deal with the problem of limited and
noisy scattered field data. We will now discuss these two reconstruction strate-
gies.

21.5.1 Fourier domain sampling

Fourier domain sampling is a procedure by which the Fourier components of the
susceptibility are determined by discrete inversion of the generalized Radon trans-
form represented by Eq. (14) [24,25]. This sampling is typically achieved by one
of two measurement schemes. The first scheme involves sampling the Fourier
transform of the susceptibility η̃(K) (for a given object orientation) by indepen-
dent variation of s⊥ and s0⊥, such that |s⊥| remains fixed and |s0⊥| assumes the
discrete values |s0⊥|(i) = |s0⊥|(i–1) + 2|s⊥|, (i = 1, 2, . . . , N). A contiguous set of
annular projection data is obtained, with each annular projection having the same
width 2k|s⊥| but a different weighting I(i)

h . This is illustrated in Fig. 9.

Figure 9 Illustrating two contiguous annular projection regions in the Fourier space of
the dielectric susceptibility. The weighting of the projection data in each of the regions
is clearly indicated. In addition, several typical projections in the first region are shown,
which correspond to the color-coded measurement directions illustrated in Fig. 7.
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It follows that the inner and outer radii of the composite annulus are Kmin =
k�|s0⊥|(1) – |s⊥|� and Kmax = k�|s0⊥|(N) + |s⊥|�, respectively. If the measure-
ment procedure is then repeated for all possible object orientations, a complete
multiview set of annular projection data is obtained that can be inverted for the
3D Fourier transform of the susceptibility. As an example, for |s0⊥|(1) = 1.2,
|s0⊥|(2) = 2, and |s⊥| = 0.4, we obtain two annular projections that cover the
spatial frequency range 0.8 ≤ K ≤ 2.4. Alternatively, we could achieve the same
Fourier coverage by choosing |s0⊥| = 1.6 and |s⊥| = 0.8. Ultimately, the choice
depends upon measurement noise and the availability of a given measurement.

Since |s⊥| ≤ 1 and |s0⊥|(i) > 1, there will be a spherical region of radius Kmin,
centered about the origin, for which no Fourier information is available. This is not
a problem in TIRT, since Kmin ≤ 2k, and the low-frequency Fourier components
can be determined from conventional scattering data [14]. The upper limit Kmax,
which ultimately determines the spatial resolution, is a function of the distance
between the exit face of the prism and the object, the thickness of the object, and
the measurement noise. For TIRT, the theoretical maximum is Kmax = k(n + 1),
so that the achievable spatial resolution is limited to λ/(n + 1). For a prism with
index of refraction n = 2.4, this yields a resolution limit of λ/3.4.

Alternatively, one can attempt a reconstruction for a fixed object orientation
(i.e., a single view). By this scheme, we fix ξ = s0⊥ – s⊥ and vary s0⊥ and s⊥
independently. We obtain a linear system of equations with the same 3D Fourier
components sampled by weighting functions of varying widths, which can be in-
verted. We then choose another ξ and repeat the process. The stability of the in-
version depends upon the diversity that one can achieve in the variation of s0⊥
and s⊥.

21.5.2 Singular-value decomposition

The second reconstruction strategy is based upon the singular value decomposition
of the linearized scattering kernel [26–28]. It follows from Sect. 21.2 that, for a
weakly scattering medium, the scattering amplitude (i.e., the data function) has the
general linear form

a(s⊥, s0⊥) =
∫

K(s⊥, s0⊥; r)η(r) d3r (18)

or, in operator notation, a = Kη. The Fourier space analysis leads us to conclude
that there exists a great deal of redundancy in the accessible data space. It is clear
that a low-pass version of the susceptibility (with subwavelength detail) may be
constructed from any number of subsets of the data. To obtain the best possi-
ble reconstruction, it is therefore desirable to take some linear combination of the
available data to find a best solution. It is sensible to take as the best solution that



David G. Fischer and P. Scott Carney 467

which minimizes the squared discrepancy between the forward modal (i.e., opera-
tor) acting on the solution and the actual data. That is, a solution that makes

‖Kη+ – a‖2 (19)

a minimum. In the event that such a solution is not unique, the solution of min-
imum norm is chosen. The operator K+ that connects the data to the solution is
known as the pseudo-inverse:

η+ = K+a. (20)

To construct the operator K+ explicitly, the singular value decomposition
(SVD) may be employed [21]. This approach offers several advantages, namely
that the structure of the linear transformation is readily apparent, the effective de-
grees of freedom may be observed, and many regularization methods may be im-
plemented by modification of the spectrum that is obtained. The SVD of the kernel
K is given by [28]

K(s⊥, s0⊥; r) =
∑

n

σn f *
n (r)gn(s⊥, s0⊥), (21)

where σn is the singular value associated with the singular functions fn and gn.
The {fn} and {gn} are orthonormal bases for the object and image Hilbert spaces,
respectively, and are eigenfunctions with eigenvalues σ2

n of the positive self-adjoint
operators K+K and KK+:

K+Kfn = σ2
n fn (22a)

KK+gn = σ2
ngn. (22b)

In addition, the fn and gn are related by

Kfn = σngn (23a)

K+gn = σnfn. (23b)

For a band-limited (i.e., physical) operator, the singular values are a monotonically
decreasing function of the index n, as shown in Fig. 10 [21].

It is interesting to note that the singular value decomposition is the functional
equivalent of eigenfunction decomposition, except that the orthonormal basis func-
tions fn and gn for the object space and image space, respectively, are different.



468 Total Internal Reflection Tomography for Three-Dimensional Subwavelength Imaging

Figure 10 Illustrating the behavior of the singular values for a band-limited operator.

The kernel of the pseudo-inverse is readily obtained by the expression

K+(r; s⊥, s0⊥) =
∑

n

1
σn

fn(r)g*
n(s⊥, s0⊥), (24)

where the sum is carried out over the n such that σn �= 0. In the event that a true
inverse exists, this pseudo-inverse reduces identically to it. When a true inverse
does not exist, the pseudo-inverse yields the solution that minimizes the error on
the orthogonal complement of the null space of K.

In practice, small eigenvalues σn in Eq. (24) lead to unstable reconstruc-
tions [21]. In order to regularize the results and effectively deal with noisy data, the
pseudo-inverse may be modified in a number of ways. By the Tikhonov method,
the inverse singular values 1/σn are replaced with σn/(σ2

n + β2),β being a tunable
parameter. The modification of the spectrum is equivalent to solving a modified
least-squared error problem, where in addition to minimizing the error, the quan-
tity ‖βη+‖2 is minimized simultaneously. When the spacing of the singular values
is large compared to β, this method produces results very similar to a simple cutoff
in the spectrum, i.e., a truncation in the sum over singular values to eliminate terms
for which σn ≤ σc, where σc represents the cutoff singular value. Regularization
effectively imposes a band limit on the reconstructions and so connects the noise
level to the resolution.

21.6 Numerical Simulation

To illustrate the utility and power of TIRT, let us consider the following two-
dimensional computer simulation. We take two point scatterers of diameter d =
λ/50 to be separated along the x-axis by λ/4 and along the z-axis by λ/10 (see
Fig. 11).

The distance along the z-axis between the prism face and the first scatterer is
taken to be λ/4. The index of refraction of the prism is n = 2.4. We take 21 equally
spaced angles of illumination in the backward half-space and 21 equally spaced
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Figure 11 Illustrating the object used for the numerical simulation.

angles of detection in the forward half-space. This corresponds to the following
ranges for the incident and scattered transverse wave vectors (k0⊥ = ks0⊥ and
k⊥ = ks⊥):

0 ≤ |k0⊥| ≤ 2.4k
0 ≤ |k⊥| ≤ k.

(25)

In Figs. 12(a) and 12(b), the transverse information content of the scattered
field is illustrated for this case† and the case of homogeneous illumination (n = 1).
Figure 12(c) represents the region of overlap between the two cases. We see that
the use of evanescent incident waves increases the information content of the scat-
tered field by roughly 70%, with a corresponding increase in transverse resolution.
But the real utility of the TIRT modality is the ability to resolve subwavelength
features as a function of depth. This is clearly demonstrated in the following fig-
ures. Figure 13(a) illustrates the object reconstruction with no added noise (only
machine error noise) and no regularization. The field of view of the figure is λ/2 by
λ/2. Figure 13(b) illustrates the object reconstruction with 40 dB of additive noise
that has been regularized. One can clearly resolve the two spheres. For purposes
of comparison, Fig. 13(c) illustrates the object reconstruction for a prism index of
refraction of n = 1. This corresponds to the case that only homogeneous waves are
used for illumination, and we see that it is difficult, even in this noise-free case to
resolve the spheres.

† In Figs. 12 and 15, we actually show the two-and-a-half-dimensional case (i.e., the case where
the scattered field is measured in the entire forward half-space) for clarity. For the 2D case, the
bands would be lines along the x-axis.
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(a) (b)

(c)

Figure 12 Illustrating the transverse information content of the scattered field for the
numerical simulation.

(a) (b)

(c)

Figure 13 Numerical simulation.
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21.7 Experimental Configuration

We are currently constructing a TIRT microscope at the NASA Glenn Research
Center for use in biofluids research. Initially, the microscope will be two-and-a-
half-dimensional, with a 3D version to follow. The configuration of the microscope
is shown in Fig. 14.

The output from a frequency-doubled Nd: YAG laser is split into a sample
beam (1%) and a reference beam (99%). The sample beam is scanned by a rotat-
ing mirror through an angular range 35◦ ≤ θs ≤ 65◦ into a cylindrical glass prism
of index of refraction n = 1.9. The critical angle of the prism is θc = 31.8◦, so
the scanned beam is totally internally reflected and evanescent waves are generated
within the transverse wave vector range 1.09k ≤ |k0⊥| ≤ 1.72k. The scattered light
is collected by a high-quality objective with a numerical aperture (NA) of 0.9 (col-
lection half-angle of 64.2◦). This corresponds to a scattered field transverse wave-
vector range of 0 ≤ |k⊥| ≤ 0.9k. The incident and scattered wave-vector ranges
are much more restricted in this case than in the numerical simulation due to prac-
tical limitations of the scanning and collection optics, respectively. Finally, the scat-
tered light is heterodyned at a high-resolution CCD camera with the beam from the
sample arm, which has been phase modulated and expanded. Consequently, there
is a direct mapping between the CCD output and the complex scattering amplitude
over the aforementioned range. For each evanescent incident field, four CCD im-
ages corresponding to four different reference beam phase shifts (0,π/2,π, 3π/2)
are taken to allow unambiguous determination of the phase of the complex scatter-
ing amplitude.

For comparison with the numerical simulation, Fig. 15 illustrates the informa-
tion content of the scattered field for the prototype TIRT microscope. We see that
the TIRT modality extends and complements the structural information that one
would obtain with homogeneous incident fields alone.

Figure 14 Illustrating the configuration of the prototype TIRT microscope.
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(a) (b)

(c)

Figure 15 Illustrating the transverse information content of the scattered field for the
prototype TIRT microscope.

21.8 Conclusion

We have discussed the role of evanescent waves in achieving the super-resolution of
near-field imaging modalities. The essential mechanism, the interaction of super-
oscillatory evanescent fields with the subwavelength structure of the sample, may
be invoked by means other than the usual probe-induced field localization. In fact,
a single evanescent plane wave may be generated at the surface of a prism and used
as a source of illumination, as is routinely done in TIRM. A careful analysis of the
scattered field reveals that the Ewald sphere of reflection is shifted by the incident
wave vector as is well understood in diffraction tomography. However, because
the magnitude of the transverse part of the evanescent wave vector is larger than
the free-space wavenumber, the region of the Fourier space of the object that is
accessible now includes points outside the usual Ewald limiting sphere. For this
reason, when data are collected for a range of incident fields, the classical resolution
limits may be overcome in a computed reconstruction of the sample susceptibility.
This approach yields the additional benefit that the reconstruction is inherently
tomographic and so a view of the sample structure as a function of depth may be
obtained.
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CHAPTER 22

NANO-OPTICS: ATOMS IN THE

NEAR FIELD

Vladilen S. Letokhov

22.1 Introduction

The classical scientific “bestseller” by M. Born and E. Wolf [1] already contained
some elements of nano-optics (the near-field Mie scattering), though this domain
of science has only recently started developing in connection with the vigorous
development of nanotechnology. The optical near field differs substantially from
the optical far field usually used in optical systems, measuring much more than
the wavelength of light. The optical near field arises near structures of subwave-
length size or near boundaries. The word “near” always means a subwavelength
distance. In other words, the near field is as if “tied” to these subwavelength struc-
tures or boundaries; i.e., it does not propagate and contributes nothing to the far
field formed at distances much longer than the wavelength of light [2]. The op-
tical near field localized within a subwavelength region forms the basis of nano-
optics [3–5], a part of nanotechnology.

The nanolocalization of an optical field makes its intensity highly nonuniform
in space. The strong spatial inhomogeneity of the optical near field, first, makes
it possible to control the spectral characteristics of atoms placed in it (atoms near
nanostructures); and second, gives rise to a gradient force that enables one to con-
trol the motion of the atoms [6] and forms the basis of atom optics [7–9]. Finally,
the optical near field localized near metal nanostructures can interact in a resonance
fashion with plasmons whose frequency is close to that of the optical field, the plas-
mons themselves being of a subwavelength size. This interaction highly enhances
the intensity of the localized field and forms the basis of plasmon nano-optics [10]
and entirely new effects, such as the extraordinary optical transmission through
subwavelength hole arrays (the Ebbesen effect) [11].

477
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In this chapter, we consider but a single avenue of inquiry in nano-optics that
is associated with both the control of the spectral properties of atoms near nanos-
tructures and the motion of atoms in the optical near field.

22.2 Atoms in the Vacuum Near Field of a Nanosphere

The presence of a nanostructure distorts the vacuum field that is usually repre-
sented as a 3D expansion of plane waves. As a result, the standard formulas for the
spontaneous decay rate of atoms in free space become inapplicable to atoms in the
immediate vicinity of nanostructures. The author and others have briefly reviewed
the many works that consider this problem [12]. It can be illustrated by the vivid
example of the drastic modification of the quadrupole transitions of an atom near a
nanosphere [13].

It is well known that the rates of quadrupole transitions in the optical region
are lower by a factor of (a0/λ)2 ∝ 10–8 to 10–6 than those of their dipole coun-
terparts, where a0 is the Bohr radius and λ is the radiation wavelength. In the
presence of meso- and nanostructures, the characteristics of dipole transitions un-
dergo substantial changes [14–16]. The probability of quadrupole transitions can
rise materially in the vicinity of a nanosphere.

To explain the physical aspect of the problem, let us consider the amplitude of
the decay of an excited atomic state into an unexcited (metastable) state, accompa-
nied by the emission of a photon. In that case, the transition matrix element Vfi has
the form

Vfi ∝
∫

ψ*
f (r)∇ψiA(r,ω) d3r, (1)

where A is the vector potential of the emitted photon taking into account the pres-
ence of material bodies, and ψf and ψi are the wave functions of the final and
initial atomic states, respectively.

As in the case of free space, the wave functions of the atom change more rapidly
than the wave function of the photon, which makes it possible to expand the latter
in a power series of coordinates in the neighborhood of the atom. With the di-
pole emission being forbidden, the first term of this series goes to zero, and the
magnitude of the matrix element is determined by the characteristic photon wave
function gradient in the vicinity of the atom:

Vfi ∝
∫

ψ*
f (r)

∂

∂ri
ψi(r)rj

∂

∂roj
A(r0,ω) d3r. (2)

A principal distinction of the case under consideration from the case of free
space is that the scale of the photon wave function gradient A is generally governed
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Figure 1 Relative change radiative linewidth (rate of spontaneous emission) for dipole
and quadrupole transitions of atom located in close proximity to the surface of dielectric
nanosphere (diamond) of radius a, where λ is the wavelength of emission.

not only by the radiation wavelength, but also by the characteristic dimensions
of the problem. Moreover, in the case of an atom located near a material body
with a small radius of curvature, a, the wave function gradient will mainly depend
on this radius and not on the radiation wavelength in free space. As a result, it
might be expected that the quadrupole emission probability will rise (λ/a)2 times
in comparison with that in the case of free space. A still greater increase in the
probability should be expected for multipole transitions of higher order. Note the
fact that where characteristic geometric parameters of the problem are close to the
size of the atomic orbit, the radiation intensity may approach the intensity of dipole
transitions.

Figure 1 presents calculation results for the increase of the radiative decay rate
of a quadrupole transition of an atom near a dielectric nanosphere with a dielectric
constant of ε = 6 (diamond) as a function its radius a. As can be seen, the effect
for the quadrupole transition is very substantial.

The nanocurvature of the vacuum near field also has a perceptible effect on
nonradiative transitions, for example, the resonance energy transfer between two
atomic dipoles separated by the surface of a dielectric nanosphere [17].

22.3 Atom Nano-optics: Photon Dots and Photon Holes

Atom optics based on laser light fields [7] suffers from a number of restrictions of
both principal and technological character that are due to the spatially “nonlocal-
ized” character of the laser fields. This makes the elements of atom optics nonlocal-
ized as well. Hence the defects of these elements, such as the aberrations of atomic
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lenses, low diffraction efficiency of atomic waves, restrictions on the contrast of
interference fringes in atomic interferometers, and so on.

It is obvious from general physical considerations that the use of spatially local-
ized potentials is preferable for the construction of the elements of atom optics. To
date there are only two types of laser fields known to be spatially localized enough,
namely, (a) the evanescent lightwave arising upon the total internal reflection of
light (1D localization), and (b) the light field produced upon diffraction by struc-
tures with a characteristic size less than the wavelength of light. The best known
example for this type of localization is that occurring upon diffraction by an aper-
ture small in comparison with the wavelength of light in an ideally conducting
screen (Bethe hole), when a local 3D field maximum is formed in front of it, whose
size is largely determined by the size of the small aperture [18–20].

A considerable shortcoming of a light field localized near a single aperture is
that it is inexorably linked with the field of the attendant standing light wave; this
is undesirable for atomic focusing, for atoms moving in this region may suffer
spontaneous decay processes that affect the focusing quality. Balykin, Klimov, and
Letokhov have proposed new types of spatially localized laser light fields with a
characteristic size in the nanometer range that are free from the above shortcom-
ing [21].

Figure 2 presents schematic diagrams for the production of a spatially local-
ized light nanofield. Two plane conducting screens separated by a distance of d of
the order of or less than the optical wavelength λ form a plane 2D waveguide
for the laser light introduced into it from the side. As is well known [22], for
a waveguide consisting of two ideally conducting parallel planes, there exist so-
lutions of the Maxwell equation that permit the propagation of radiation though
it, no matter how small its thickness d, even if it is much less than the radiation
wavelength. Inside the waveguide, this solution coincides with a plane wave whose

(a) (b)

Figure 2 Geometry of forming of photon dot (a) and photon hole (b) by means of two
coaxial nanoholes in plane conductive thin waveguide (from Balykin et al.) [21].
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electric field strength vector is normal to the waveguide planes. Actually, such a
system is a two-conductor transmission line and provides for a 2D nanometer-size
localization of light. Let two small coaxial holes with a radius of a 	 λ be made
in the conducting screens [Fig. 2(b)]. If the diameters of the holes are substan-
tially smaller than the wavelength of the radiation introduced, the radiation will
practically not escape through these holes, but will be strongly modified near them.
Actually, in the vicinity of the holes there takes place the reduction of the field in a
region with a characteristic spatial size of the order of the hole diameter, i.e., much
smaller than λ, where λ is the radiation wavelength. The volume of this region is
V ∼ a2d 	 λ3. Such a field modification can naturally be called a “photon hole.”

Another method for localizing light fields within nanometer-size regions is
shown in Fig. 2(a). This method is a generalization of the localization near an
aperture [20], but it is free from the shortcoming associated with the presence of
the standing wavefield. Consider once more two ideally conducting planes with
holes, but separated now by a distance of d = λ/2, i.e., kd = π. Figure 3 shows
the field intensity distribution in the vicinity of the holes in the plane waveguide
and inside the waveguide in the case where d = λ/2, a = λ/4. As one can see
from the figure, the field drops rapidly enough outside the waveguide in the di-
rection normal to the waveguide planes and has a maximum in the center of the
waveguide; i.e., a “photon dot” is formed. The characteristic volume of such a dot

Figure 3 Intensity dependence of light for photon dot for a/d = 0.5 (from Balykin
et al.) [21].
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is V = λ/2a2 	 λ3. The sharp intensity peaks near the aperture edges are due to
the assumption of the infinite conductivity of the waveguide walls. In waveguides
with a finite wall conductivity, the peaks will be not so prominent. The magnitude
of the maximum (reckoned relative to the case where the holes are absent) at z = 0
is twice that in the case of a single hole. This circumstance is due to the structural
interference of the fields scattered by the holes and makes it possible to use weaker
fields compared to those in the case of a single hole. Spatially localized light fields
in the form of photon dots and photon holes can be used for both the focusing and
localization of atoms.

It is possible to make a great number of hole pairs (arrays) and the corre-
sponding number of localized fields (0-dimensional dots—photon holes and pho-
ton dots). Such an array makes it possible to simultaneously control many atomic
beams. The use of such arrays will in turn make it possible to produce periodic
arrays of localized atoms—atomic arrays [23]—with a period independent of the
wavelength of light. Such periodic arrays may have properties similar to those of
the planar photonic crystals [24], but as distinct from the latter, they may combine
both arrays of photon dots and arrays of localized atoms. On the whole, the ap-
proach suggested in Balykin et al. [21], along with Klimov and Letokhov [19,20],
forms the concept of “atom nano-optics”—atom optics based on optical nanofields.

22.4 Atom Manipulation in the Near Field

The concept of controlling atomic motion in a standing lightwave by means of
the dipole (gradient) force [25] contains elements of a number of effects of atom
optics, such as the reflection, focusing, and channeling (guiding) of atoms (Fig. 4).
All these effects, starting with the reflection of atoms from the intensity gradient
of an evanescent lightwave field (suggested in Cook and Hill [26] and first tested
in Balykin et al. [27]) were investigated at many laboratories. Being unable to
consider all of them in this brief paper, we refer the reader to the first book on atom
optics [7] and the review [28] devoted to the motion of atoms in the optical near
field.

Figure 4 schematically illustrates several methods of controlling atomic motion
in an evanescent field that were either suggested or experimentally implemented at
my laboratory at the Institute of Spectroscopy of the Russian Academy of Sciences:
(a) reflection of atoms from the gradient of an intense light field (suggested in
Ref. [26], first experimented in Ref. [27]); (b) guiding of atoms in a hollow optical
waveguide (suggested in Ref. [29], experimented in Ref. [30]); (c) trapping of
atoms (suggested in Ref. [31]), and (d) trapping and cooling of atoms in a horn-
back waveguide (experimented in Ref. [32]). All these effects form the basis of
atom optics.
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Figure 4 Basic effects of atomic nano-optics with evanescent waves: (a) reflection of
atoms; (b) guiding of atoms in hollow fiber; (c) trapping of atoms; (d) reflection cooling
and guiding.

Figure 5 illustrates the main effects of atom optics that can be observed in the
near zone of a subwavelength-size hole in a screen (Bethe hole): (a) focusing of
slow atoms [33], (b) trapping of atoms [20], (c) sorting of atoms according to
their species [34], and (d) sorting of atoms according to their velocity (Maxwell
demon) [35]. Though the near-field atom-optical experiments have only just been
started, they hold much promise, especially in regard to the use of photon dots and
photon holes considered above in Sect. 22.3.

22.5 Atom in the Near Field and Plasmons

The main problem in nano-optics is the localization of light inside a volume of
space (matter) only a few nanometers in size by various techniques (Figs. 4, 5). Sur-
face plasmons that can enhance electromagnetic energy into a tiny volume should
play an important role here. We have already mentioned in the introduction the
effect of the giant optical transmission of subwavelength, nanometer-scale aperture
in a metal film. This effect arises precisely owing to the plasmons of the metal film,
when the incident light is in resonance with surface plasmons [36]. One can fore-
see the great role of plasmon effects in nano-optics: first, the vibration frequency of
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Figure 5 Basic effects of atomic nanooptics in near field of Bethe hole: (a) focusing;
(b) trapping; (c) sorting.

plasmons lies in the optical region and can be varied; second, the size of plasmons
is in the submicron region; and third, plasmons possess mobility.

Klimov, Ducloy, and Letokhov recently considered a model of an apertureless
scanning microscope with a prolate nanospheroid as a tip and excited molecule
(dipole) as an object (Fig. 6) [37,38]. A prolate nanospheroid possesses resonance
properties owing to the plasmons excited therein. The process of excitation of the
object molecule and the process of emission of light by it are separated both in time
and frequency. This means that the molecule excitation process is off resonance
with the nanoscope needle, whereas the emission band of the molecule falls within
the resonance range of the nanospheroid as a tip (Fig. 6).

When the molecular dipole is oriented normal to the surface of the microscopic
stage and the nanotip scans the surface past the molecule at various heights h from
it (from 0 to 60 nm), the emission rate of the excited molecule is observed to in-
crease in a resonance fashion in a very small region (a few nanometers across)
equal to the radius of the nanotip [Fig. 7(a)]. When the molecular dipole is ori-
ented parallel to the surface, the spontaneous emission rate of the excited molecule
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Figure 6 Geometry of an apertureless scanning microscope with an excited molecule as
an object and location of frequencies of external pumping laser light for excitation of mole-
cule on surface and plasmon resonance in the nanospheroid tip (from Klimov et al.) [37].

is observed to be sharply suppressed [Fig. 7(b)]. The size of the region where
the radiation intensity is reduced also amounts to a few nanometers; i.e., it coin-
cides with the radius of curvature of the tip. Thus, in the given geometry of the
apertureless near field microscope the spatial resolution is governed by the radius of
curvature of the nanotip and hence can be hundreds of times better than the optical
wavelength λ.

22.6 Applications

Near-field nano-optics is a new and fruitful domain of nanoscience. Numerous ef-
fects arising here make it possible to use the effect of nonpropagating light fields
on both the internal degrees of freedom of atoms or molecules (alteration of radia-
tive transition rates) and the translational degrees of freedom of atoms (reflection,
guiding, trapping, cooling, etc.). One can, therefore, foresee various applications,
at least in the following fields: (1) spectroscopy with a nanometer-high spatial res-
olution, (2) nanofabrication technology, and (3) high-density optical storage of in-
formation. All this makes nanooptics one of the important areas of nanoscience and
nanotechnology.
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(a)

(b)

Figure 7 Radiated power (relative radiative losses) as a function of the dipole displace-
ment �x to a silver nanospheroid (Ag: ε = –15.37 + 10.231, λ = 632.8 nm, f = 60 nm
is the half distance between focii of prolate nanospheroid) for various minimal heights h.
Case of small detuning from the plasmon resonance (ε = 1.02): (a) dipole is oriented ver-
tically along the z-axis; (b) dipole is oriented horizontally along the x-axis (from Klimov
et al., [37]).
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CHAPTER 23

COHERENCE ISSUES IN FLATLAND

Adolf W. Lohmann, Avi Pe’er, and Asher A. Friesem

E. A. Abbott wrote his famous story 120 years ago [1]. He describes the life of
the 2D creatures living in Flatland. We, as 3D creatures, are able to inspect every-
thing in Flatland without leaving a trace behind. We also may influence the laws
of physics in Flatland, for example by tilting it, which would change the gravity in
Flatland.

We have shown how to convert the Flatland world from pure science fiction to
experimental reality, at least the optical aspects of reality [2–4]. Our experimental
setup is shown in Fig. 1. A 3D point source and a 3D lens illuminate Flatland
(y = 0) with a tilted plane wave. The Flatland physicist will observe a wavelength,
which differs from the 3D wavelength λ by a directional factor:

� =
λ

cosα
. (1)

The tilt angle α, and hence the Flatland wavelength, can be varied easily by the
3D physicist, who shifts the 3D point source along the y-axis and thereby varies α.

Figure 1 Generic setup for optics in Flatland. A tilted plane wave illuminates the object
U0(x). The wave field U(x, z) may be observed at a plane y = constant, at z ≥ 0.
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The theory is based on the 3D wave equation:

�3V(x, y, z) + k2V(x, y, z) = 0, (2)

�3 =
∂2

∂x2 +
∂2

∂y2 +
∂2

∂z2 . (3)

The tilted plane wave in the region z < 0 is

V(x, y, z) = exp[ik(y sinα + z cosα)]. (4)

The object U0(x) at z = 0 generates immediately behind it

V(x, y, z = 0) = U0(x) exp[iky sinα]. (5)

The y-dependence will remain the same for z > 0 because there is no piece of
hardware with a y-dependent structure. Hence, the 3D wavefield is separable:

V(x, y, z) = U(x, z) exp[iky sinα]. (6)

Insertion into the wave equation yields

exp(iky sinα)[�2U(x, z) + k2(1 – sin2α)U(x, z)] = 0, (7)

that leads us to the 2D wave equation

�2U(x, z) + k2 cos2αU(x, z) = 0, (8)

�2 =
∂2

∂x2 +
∂2

∂z2 ,

k cosα =
2π
λ

cosα =
2π
�

.

(9)

The wavelength in Flatland is apparently:

� =
λ

cos α
. (10)
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So much about the theory, which has been presented in more detail before [2].
We did show that it is really �, not λ, that determines the outcome of histori-
cal interference experiments such as Young’s double-slit experiment [3]. Grating
diffraction served as a tool for measuring the wavelength. It yielded �, not λ.

We used monochromatic laser light as before, when manipulating the 2D co-
herence, as observed in Flatland. To that end we blurred the effective size of the
point source (Fig. 1). A vertical stretching in y-direction meant a blur of the angle
α and hence also a blur of the 2D wavelength � = λ/cosα. Hence, in this manner
we manipulated the spectral aspect of coherence. The spatial aspects of partial 2D
coherence can be manipulated by blurring the lateral x-location of the point source.
This blurring procedure may be implemented, for example, by moving the point
source laterally while recording the outcome of an experiment. Instead of moving
the source laterally, it is more convenient to move the lens laterally.

In a more general experiment one might also modulate the radiance of the
moving point source. That corresponds to a partial coherence experiment with a
temporally incoherent light source, which has a spatial structure. In other words,
this would be the implementation of the van Cittert-Zernike theorem.

That theorem describes a special case of the Wolf equations [5]. They are the
generalization of the Helmholtz wave equation from strictly coherent to partially
coherent. The Helmholtz equation is:

�V(x, y, z) + k2V(x, y, z) = 0, (11)

abbreviated as:

H[V(x, y, z)] = 0,

H = � + k2.
(12)

The definition of the coherence function is in our notation:

�(x1, y1, z1; x2, y2, z2) = 〈V(x1, y1, z1)V*(x2, y2, z2)〉. (13)

The operators H1 and H2 commute with the averaging brackets. Hence, it is

H1[�] = (�1 + k2)� = 0, H2[�] = (�2 + k2)� = 0, (14)

where

�1 =
∂2

∂x2
1

+
∂2

∂y2
1

+
∂2

∂z2
1

,

�2 =
∂2

∂x2
2

+
∂2

∂y2
2

+
∂2

∂z2
2

.

(15)
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Figure 2 In-flight change of the wavelength, due to deflection by a prism.

These are the Wolf equations, written for the 3D world. But it is obvious from the
previous discussions that Wolf ’s equations also hold in Flatland.

The 3D physicist who provides Flatland with light may use a He-Ne laser
for convenience. The 2D wavelength will be larger because of the cosine term in
Eq. 11. The tilt angle at the object plane (z = 0) depends on the geometry of the
setup (Fig. 1). The 3D physicist is capable of changing � in flight, for example by
inserting a prism at z = zp (Fig. 2). The new wavelength beyond z = zp may be
larger or smaller, depending on the direction of the prism wedge (in y-direction).
With this amazing capability, the 2D physicist can observe a Hubble effect some-
where far to the right (z: large). Two stars can be implemented as two slits at z = 0:

U0(x) = A1δ(x – x1) + A2δ(x – x2). (16)

Their wavelengths �1 and �2 will be different if two different prisms are placed
upon the two slits. If the cosmology in Flatland is based on a big bang hypothesis,
and if the Flatland physicist knows about the Doppler effect, the physicist will
declare the star with the larger � to be farther away than the other star. We, with
our superior 3D intelligence, of course know the true reality. Are there perhaps
somewhere some super-smart hidden ND creatures (N > 3)?

Before closing we would like to express our respect to the two pioneers of co-
herence theory: Emil Wolf and Leonard Mandel. In addition to many specific
contributions, they coordinated and fostered the field of coherence theory by start-
ing the series of Rochester coherence conferences in 1961 and by writing a con-
clusive monograph [6]. In Fig. 3(a) you see a computer-generated Fourier holo-
gram, whose macroscopic brightness distribution shows Emil. The holographic
information is encoded as micro positions of many dots (128 × 128). The optical
reconstruction shows Leonard as Fig. 3(b). For the sake of balance we made a sim-
ilar experiment, but with switching the roles of Leonard Mandel and Emil Wolf
[Figs. 3(c) and (d)].
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(a) (b)

(c) (d)

Figure 3 The Wolf-Mandel entanglement. Figure 3(a) shows a computer-generated
Fourier hologram, where the macroscopic intensity at the hologram plane matches the face
of Emil Wolf; the optical reconstruction shown in (b) matches the face of Leonard Man-
del. Figure 3(c) and (d) are similar, but with the roles of Wolf and Mandel interchanged
for the sake of balance.
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